
Firebird

Embedded SQL
Guide for RM/Cobol

Embedded SQL Guide for RM/Cobol 3

Table of Contents
1. Program Structure... 6

1.1. General... 6
1.2. Reading this Guide... 6
1.3. Definition of Terms.. 6
1.4. Declaring Host Variables... 7
1.5. Declaring and Accessing Databases... 7
1.6. Transactions..7
1.7. SQL Statements.. 8
1.8. Dynamic SQL (DSQL)... 8
1.9. Error Handling..8

2. Using Databases..9
2.1. Declaring a Database.. 9

2.1.1. Connection Strings..9
2.1.2. SET DATABASE...9
2.1.3. SET NAMES.. 10

2.2. Opening a Database..10
2.2.1. CONNECT... 10

2.3. Closing a Database... 12
2.3.1. DISCONNECT... 12

3. Using Transactions...13
3.1. Transaction Behaviour..13

3.1.1. Access Mode...13
3.1.2. Lock Resolution..13
3.1.3. Isolation Level.. 13

3.2. Starting a Transaction...14
3.2.1. SET TRANSACTION.. 14

3.3. Saving Your Changes... 15
3.3.1. COMMIT..15

3.4. Discarding Your Changes...15
3.4.1. ROLLBACK...15

4. Accessing the Data..17
4.1. Supported Data Types.. 17
4.2. SQL Expressions.. 19

4.2.1. Precedence of Operators... 20
4.2.2. String Concatenation.. 20
4.2.3. Arithmetic Operators.. 21
4.2.4. Comparison Operators.. 21

4.2.4.1. BETWEEN... 21
4.2.4.2. CONTAINING..21
4.2.4.3. IN.. 22
4.2.4.4. LIKE..22
4.2.4.5. IS NULL..23
4.2.4.6. STARTING WITH..23
4.2.4.7. ALL... 23
4.2.4.8. ANY or SOME... 23

4 Embedded SQL Guide for RM/Cobol

4.2.4.9. EXISTS... 23
4.2.4.10. SINGULAR...24

4.2.5. Logical Operators... 24
4.2.6. NULLs in Expressions ...24
4.2.7. Computed Columns.. 25
4.2.8. Built in Functions... 25

4.2.8.1. CAST.. 26
4.2.8.2. EXTRACT.. 26
4.2.8.3. SUBSTRING.. 27
4.2.8.4. UPPER.. 27
4.2.8.5. GEN_ID.. 27
4.2.8.6. AVG..27
4.2.8.7. COUNT...27
4.2.8.8. MAX... 28
4.2.8.9. MIN...28
4.2.8.10. SUM..28
4.2.8.11. CASE.. 28
4.2.8.12. COALESCE.. 29
4.2.8.13. NULLIF...29

4.3. Retrieving Data...29
4.3.1. The SELECT statement.. 29
4.3.2. Named Transactions... 30
4.3.3. Set Qualifiers.. 30
4.3.4. List of Columns.. 30
4.3.5. Specifying Host Variables for Returned Columns..31
4.3.6. Data Source...31
4.3.7. Search Conditions...32
4.3.8. Grouping Output...32
4.3.9. Limiting Groups Returned.. 32
4.3.10. Combining Queries...33
4.3.11. Ordering Output..33
4.3.12. Controlling Row Locking... 34
4.3.13. Selecting a Single Row...35
4.3.14. Selecting Multiple Rows...35

4.3.14.1. Declaring a Cursor.. 35
4.3.14.2. Opening a Cursor.. 35
4.3.14.3. Fetching Rows from a Cursor... 35
4.3.14.4. Closing a Cursor... 36

4.4. Inserting Data... 36
4.4.1. The INSERT Statement.. 36

4.5. Updating Data...37
4.5.1. The UPDATE statement... 37

4.6. Deleting Data..38
4.6.1. The DELETE Statement... 38

5. Accessing Blob Data...39
5.1. Retrieving Blob Data..39

5.1.1. Retrieving the Blob ID..39
5.1.2. Retrieving the Blob Data.. 40

5.1.2.1. Declaring BLOB READ Cursors.. 40

Embedded SQL Guide for RM/Cobol 5

5.1.2.2. Opening BLOB READ Cursors.. 40
5.1.2.3. Fetching Blob Data... 40
5.1.2.4. Closing BLOB READ Cursors... 41

5.2. Updating Blob Data..41
5.2.1. Inserting Blob Data...41

5.2.1.1. Declaring BLOB INSERT Cursors... 41
5.2.1.2. Opening BLOB INSERT Cursors... 41
5.2.1.3. Inserting Blob Data... 42
5.2.1.4. Closing BLOB WRITE Cursors..42

5.2.2. Updating the Blob ID..42
5.3. Deleting Blob Data... 43

6. Using Stored Procedures... 44
6.1. Using Select Procedures... 44
6.2. Using Executable Procedures... 44

7. Using Events... 46
7.1. Signaling Event Occurrence... 46
7.2. Registering Interest in Events...46
7.3. Waiting for an Event.. 46

8. Handling Errors... 48
8.1. WHENEVER..48
8.2. Checking SQLCODE Directly... 49
8.3. Displaying Error Messages...49

8.3.1. rmc_status_address... 49
8.3.2. isc_interprete...49

9. Compiling and Running Your Program.. 51
9.1. Compiling Your Program... 51
9.2. Running Your Program.. 53

6 Embedded SQL Guide for RM/Cobol

1. Program Structure

1.1. General
An embedded SQL application is an application in which the SQL statements needed to access data from the database
manager are coded directly into the source code of the application. These SQL statements are compiled into code,
executable by the database manager, at compile time rather than at run time as is the case for dynamic SQL (DSQL)
applications. This results in a modest improvement in the application's performance. It also makes the application's source
code easier to understand since the SQL statements are located in the code at the place where they will be executed rather
than being buried in WORKING-STORAGE.

Embedded SQL applications include declarations and statements which tell the preprocessor, gpre, how the application is to
interact with the Firebird database manager. The application must:

Declare host variables to use for data transfer between the application and the database manager.

Declare all databases to be accessed by the application.

Open, all databases before they are accessed by the application.

Set the options for and start all non default transactions used by the application.

Include the SQL statements used to access the application's data.

Close all transactions and databases before the application terminates.

Provide error handling.

This chapter touches, very briefly, on each of these points. More detail is given in the following chapters.

1.2. Reading this Guide
There are certain conventions used throughout this guide when describing the syntax of SQL statements.

Words given in upper case are reserved words and must be typed as shown.

Words given in lower case are user supplied.

Items enclosed in braces, {}, represent a list of choices, one of which must be chosen.

Items enclosed in square brackets, [], represent optional items.

Punctuation, like semi-colons and quotes, must be typed as shown.

1.3. Definition of Terms
There are certain terms used throughout this guide that may be new to some users. Below is a short
explanation of some of these terms.

Tables are similar to COBOL files.

Rows are similar to COBOL records.

Columns are similar to COBOL fields.

Cursors are pointers into the rows of the result set of a SQL search.

Result sets contain rows returned by a query.

A view is a subset of one or more tables containing some or all of the columns and some or all of the rows from the table(s).

The keyword NULL is used to refer to columns that do not have a value. This is sometimes a difficult concept for Cobol
programmers to grasp since “no value” is not equivalent to spaces or zeros. A column value has a value of spaces or zeros is
NOT NULL. A column the is NULL will never be considered as equal to a column with a value, whatever that value might
happen to be. In fact, a NULL column is not even considered to be equal to another NULL column. Any expression which
includes NULL evaluates to unknown rather than a specific value.

Embedded SQL Guide for RM/Cobol 7

1.4. Declaring Host Variables
 Host variables are standard Cobol data items that are used to transfer data between the application and the database
manager. Host variables are used in the following situations:

During data retrieval the values of database fields are moved into host variables.

During insert or update operations the values of host variables are moved into database fields.

Host variables can be used to hold the values used in search conditions.

Some embedded SQL preprocessors require that all host variables be declared between BEGIN DECLARE SECTION and
END DECLARE SECTION declarations. For portability reasons Firebird supports these declarations but it is not a
requirement of the Firebird preprocessor that host variables be declared between them. Host variables may be declared
anywhere a standard Cobol data item may be declared, either in the WORKING-STORAGE or LINKAGE sections.

In addition to being able to declare host variables in the usual, Cobol way it is also possible to declare a host variable
BASED ON the definition of a database column. Using BASED ON ensures that the host variable is of the proper size and
type to hold the data from the database column. For example, the following statements both declare a shipper address field:

01 WS-SHIP-ADDR PIC X(35).
01 WS-SHIP-ADDR BASED ON LOADS.LD_SHIP_ADDR1.

Assuming that the column LD_SHIP_ADDR1 from the table LOADS is defined as a 35 character text field these two lines
of code are equivalent.

1.5. Declaring and Accessing Databases
Embedded SQL applications can access multiple Firebird databases simultaneously. Each database must be declared and
opened before it can be accessed by the application. Programs that access only a single database need not declare the
database or assign a database handle. Instead the database can be specified on the gpre command line.

The embedded SQL application must declare and open the database before attempting to start a transaction or access any of
the database tables. Opening a database performs the following actions:

Connects to the database manager

Open the database files

Allocates the system resources required to manage the database connection

To declare a database the application uses the SET DATABASE statement. To open the database it uses the CONNECT
statement. For example, the following code snippet declares a database and opens it:

EXEC SQL
 DECLARE DATABASE DB1 = 'sample.fdb'; .
 ...
EXEC SQL
 CONNECT DB1; .

Before terminating, an embedded SQL application must close the database. To close a database use the DISCONNECT
statement or the RELEASE clause of the COMMIT and ROLLBACK statements.

1.6. Transactions
An understanding of transaction management is central to any SQL application. All data access must be carried out within
the context of a transaction. The transaction is responsible for making certain that all data changes within its scope either
succeed or fail as a unit. Efficient use of transactions will result in a fast, responsive system. Inefficient use of transactions
can lead to a slow, sluggish system or, even worse, a system plagued by hangs and deadlocks.

Even though gpre provides automatic transaction management I wouldn't recommend using it. Explicit transaction
management always gives better control and efficiency.

To start a transaction the application uses the SET TRANSACTION statement. This statement specifies the type of
transaction to be started, READ ONLY or READ WRITE, the isolation level, READ COMMITTED or SNAPSHOT, the
lock resolution mode, WAIT or NO WAIT, and other options. It also, optionally, names the transaction. The transaction
name becomes important if you want to use multiple transactions within a single application.

8 Embedded SQL Guide for RM/Cobol

To save the changes made during a transaction, the application uses the COMMIT statement. To discard changes it uses the
ROLLBACK statement.

1.7. SQL Statements
SQL statements are always preceded by EXEC SQL and are terminated with a semi-colon. It is also possible to add an
optional period following the semi-colon if the Cobol syntax requires it. For example:

EXEC SQL
 SELECT LD_SHIP_ADDR1
 INTO :WS-SHIP-ADDR1
 FROM LOADS
 WHERE LD_LOAD_NUMBER = 123456; .

1.8. Dynamic SQL (DSQL)
Dynamic SQL (DSQL) applications must be able to manipulate an XSQLDA structure. Since this structure contains
pointers to the data fields and since RM/Cobol is not able to dereference these pointers to obtain the value of the field that
they point to, it is not possible to use DSQL in an RM/Cobol application. Therefore, the DSQL capabilities of the
preprocessor are not discussed in this manual.

1.9. Error Handling
Every executable SQL statement returns a value in SQLCODE which indicates the success or failure of that statement. The
application must check this value after every statement in order to determine whether or not the statement succeeded. This
can be done by either manually checking SQLCODE after every statement or by using a WHENEVER SQLERROR
statement. WHENEVER SQLERROR provides a means of specifying a default action that should take place whenever an
SQL error occurs. The default action will be taken for every SQL statement appearing in the application after the
WHENEVER SQLERROR statement. For example:

EXEC SQL
 SELECT LD_SHIP_ADDR1
 INTO :WS_SHIP_ADDR
 FROM LOADS
 WHERE LD_LOAD_NUMBER = 123456; .
 IF SQLCODE < ZERO THEN
 GO TO ISC-ERROR.
 MOVE “NEW ADDRESS” TO WS-SHIP-ADDR.
EXEC SQL
 UPDATE LOADS
 SET LD_SHIP_ADDR1 = :WS-SHIP-ADDR
 WHERE LD_LOAD_NUMBER = 123456; .
 IF SQLCODE < ZERO THEN
 GO TO ISC-ERROR.

is equivalent to:
EXEC SQL
 WHENEVER SQLERROR GO TO ISC-ERROR; .
EXEC SQL
 SELECT LD_SHIP_ADDR1
 INTO :WS_SHIP_ADDR
 FROM LOADS
 WHERE LD_LOAD_NUMBER = 123456; .
 MOVE “NEW ADDRESS” TO WS-SHIP-ADDR.
EXEC SQL
 UPDATE LOADS
 SET LD_SHIP_ADDR1 = :WS-SHIP-ADDR
 WHERE LD_LOAD_NUMBER = 123456; .

Embedded SQL Guide for RM/Cobol 9

2. Using Databases
This chapter describes how embedded SQL applications use SQL statements to declare and access databases. There are
three SQL statements which set up a database for access:

SET DATABASE declares a database handle and optionally configures certain operational parameters for the
database.

SET NAMES optionally specifies the character set in use by the application for CHAR, VARCHAR and TEXT
Blobs. The server uses this information to translate from the database's default character set to that used by the
application.

CONNECT opens a database and optionally assigns values to certain operational parameters for the database.

All databases must be closed before the application terminates.

2.1. Declaring a Database
Before a database can be used in an application it must be declared using the SET DATABASE statement to establish a
database handle. A database handle is a 32 bit integer value that provides a unique identifier for the database connection.
Database handles are used in subsequent SQL statements to identify the database that they should act upon. Database
handles can also be used in applications that access multiple databases simultaneously to differentiate tables when two or
more databases have identically named tables.

Each database handle must have a name that is unique among all other variables in the application and cannot be a Cobol
reserved word.

It is possible for an embedded SQL application to access data from more than one database concurrently. To do this you
must declare each database separately using the SET DATABASE statement. Each declaration must use a unique name for
the database handle.

2.1.1. Connection Strings
Every database is referenced by using a connection string (path). A connection string consists of two parts; an optional
server name and a platform specific path to the database file itself. There are several different formats for connection strings
depending on the protocol to be used to communicate with the database manager but since we will be using only the TCP/IP
protocol I will only describe that format in this guide.

The connection string has the following format:
server:path

Connection String for a Windows Server
w2k:c:\data\tl.fdb

Connection String for a Unix Server
unix:/data/tl.fdb

Notice that the database file path conforms to the standard in use by the server where the file is located. Windows servers
use driver specifiers and backslashes and Unix servers don't use a driver specifier and use forward slashes. Firebird
databases cannot be accessed by way of a shared drive or directory. The drive specifier for Windows systems must always
point to a locally connected hard drive. Likewise, the full path for Unix systems must specify directories located on a locally
connected hard drive.

2.1.2. SET DATABASE
SET {DATABASE | SCHEMA}
 dbhandle = [GLOBAL | STATIC | EXTERN]
 [COMPILETIME] [FILENAME] 'dbname'
 [USER 'name' PASSWORD 'pwd']
 [RUNTIME [FILENAME] {'dbname' | :var}
 [USER {'name' | :var} PASSWORD {'pwd' | :var}]];

SET DATABASE declares a host variable named dbhandle to hold the database handle associated with dbname.
Applications which access multiple databases simultaneously must use SET DATABASE to create separate database
handles for each database.

10 Embedded SQL Guide for RM/Cobol

dbname is the platform specific path to the database. It must follow the file naming conventions for the server where the
database resides.

The GLOBAL parameter declares the handle to be global to the run unit. All subroutines executed as part of the current run
unit can access this handle. The STATIC parameter restricts accessibility of the handle to the current source module. The
EXTERN parameter causes the handle to reference a global handle from another source module. Global is the default.

The optional COMPILETIME and RUNTIME parameters allow a single database handle to refer to one database at
compile time and a different database at run time. If these parameters are omitted or if only COMPILETIME is given the
handle will reference the same database at compile time and run time. The run time database can be overridden by the
CONNECT statement.

The USER and PASSWORD parameters supply the user id and password used to connect to the database. The compile
time user id and password can be overridden on the gpre command line. The run time user id and password can be
overridden by the CONNECT statement or by supplying their values in the host variables denoted by var.

This statement causes a number of host variables to be declared at the point in the program where it is encountered. Hence,
this statement must be placed in WORKING-STORAGE.

Example
WORKING-STORAGE SECTION.
EXEC SQL
 SET DATABASE TL = COMPILETIME 'w2k:c:\databases\tl.fdb'
 USER 'sysdba' PASSWORD 'masterkey';

2.1.3. SET NAMES
SET NAMES [charset | :var];

SET NAMES specifies the character set to use for subsequent database attachments. This statement must appear before the
SET DATABASE and CONNECT statements that it is to affect.

charset is the name of the character set used by the application. Data will translated between this character set and the
default character set for the database as data is transferred between the application and the database manager. The default
character set is NONE.

Using character set NONE means that no translation will take place. The application will receive the data just as it was
entered into the database.

2.2. Opening a Database
Before data can be retrieved from or stored into a database it must first be opened. This is also known as connecting to the
database. Opening, or connecting to, a database is accomplished using the CONNECT statement.

The CONNECT statement:

Allocates system resource for the database.

Opens the database and examines it to be sure that it is valid.

Checks the user name and password against the security database to ascertain whether or not the user is allowed to
access the database.

Optionally provides an SQL role that the user adopts on connection to the database, provided that the user has
previously been granted membership in the role. A role is a security group that controls access to various parts of the
database.

Sets the size of the database cache buffer to allocate to the application when the default cache in inappropriate.

2.2.1. CONNECT
CONNECT [TO] {{ALL | DEFAULT} [<config_opts>] | <db_specs>};
<db_specs> = {{'connection_string' | :var} AS dbhandle | dbhandle}
 [<config_opts>] [, <dp_specs>]

Embedded SQL Guide for RM/Cobol 11

<config_opts> = USER {'user' | :var} |
 PASSWORD {'password' | :var} |
 CACHE integer [BUFFERS] [<config_opts>]

If the all seems a little daunting, well it is. This can be restated in a form more familiar to Cobol programmers as:

Format 1
CONNECT [TO] {ALL | DEFAULT}
 [USER {'user' | :var}]
 [PASSWORD {'password' | :var}]
 [CACHE integer [BUFFERS]];
Format 2
CONNECT [TO] {{'connection_string' | :var} AS dbhandle | dbhandle}, ...
 [USER {'user' | :var}]
 [PASSWORD {'password' | :var}]
 [CACHE integer [BUFFERS]];

Use of ALL or DEFAULT, as in Format 1, opens all databases specified by a SET DATABASE statement. Options
specified with ALL or DEFAULT apply to all databases. Use of Format 2 opens only the database(s) given in the
CONNECT statement.

'connection_string' is the platform specific path to the database. If this parameter is omitted the connection string given
in the SET DATABASE statement which declared dbhandle is used.

dbhabdle is a database handle declared in a previous SET DATABASE statement.

The USER and PASSWORD parameters provide the user name and password to be used to connect to the database
manager. If these parameters are omitted, the ones given in the SET DATABASE statement will be used.

The CACHE parameter sets the number of database pages that can be held in memory (cached). Adjusting this number
upward will generally improve performance while adjusting it downward will generally degrade performance. The
minimum value for this parameter is 45 while the default and maximum values are dependent on the database manager's
configuration and the availability of system resources.

Examples

Connect to all databases declared with SET DATABASE statements, using the user name and password from the SET
DATABASE statement:

EXEC SQL
 SET DATABASE TL = 'w2k:c:\data\tl.fdb' USER 'sysdba' PASSWORD 'masterkey';
EXEC SQL
 SET DATABASE IMG = 'w2k:c:\data\img.fdb' USER 'sysdba' PASSWORD 'masterkey';
EXEC SQL
 CONNECT TO ALL;

Connect to a single database using the connection string given in the SET DATABASE statement for handle TL but
providing a hard coded user name and password:

EXEC SQL
 SET DATABASE TL = 'w2k:c:\data\tl.fdb' USER 'sysdba' PASSWORD 'masterkey';
EXEC SQL
 CONNECT TL USER 'sysdba' PASSWORD 'masterkey';

Connect to a single database using a connection string, user name and password held in host variables:
EXEC SQL
 SET DATABASE TL = COMPILETIME 'w2k:c:\data\tl.fdb'
 USER 'sysdba' PASSWORD 'masterkey';
EXEC SQL
 CONNECT :WS-DB-PATH AS TL USER :WS-USER-ID PASSWORD :WS-PASSWORD;

12 Embedded SQL Guide for RM/Cobol

2.3. Closing a Database
When the application is finished with a database, the database should be closed. A database can be closed using the
DISCONNECT statement or the RELEASE clause of the COMMIT and ROLLBACK statements. Before closing a
database you must COMMIT or ROLLBACK all transactions affecting the databases(s) to be closed. Closing a database
does the following:

Closes open database files.

Releases system resources used by the database connection.

Disconnects from the database manager.

2.3.1. DISCONNECT
DISCONNECT {{ALL | DEFAULT} | dbhandle [[, dbhandle] ...]};
Use of ALL or DEFAULT closes all open databases.

dbhandle is the handle of a previously opened database. You can specify multiple handles to close multiple databases.

Examples

Close all open databases.
EXEC SQL
 DISCONNECT ALL;

Close specific databases.
EXEC SQL
 DISCONNECT TL, IMG;

Embedded SQL Guide for RM/Cobol 13

3. Using Transactions
All SQL data definition and data manipulation statements take place within the context of a transaction. A transaction
defines a unit of work that either succeeds or fails as a unit. Transactions are managed through the use of the SET
TRANSACTION, COMMIT and ROLLBACK statements.

Transaction management statements define the beginning and end of a transaction. They also control its behaviour and
interaction with other simultaneously running transactions that share access to the same data. There are two type of
transactions in Firebird; the default transaction (ISC-TRANS) and named transactions.

The default transaction is used when a statement which requires a transaction is encountered without a preceding SET
TRANSACTION statement. Default behaviour is defined for the default transaction but it can be overridden by starting the
default transaction using SET TRANSACTION and specifying alternative behaviour as parameters. In the absence of the
gpre -manual command line parameter a default transaction will be started automatically when needed and committed when
the database is closed.

Named transactions are always started using SET TRANSACTION statements. These statements provide unique names for
each transaction and usually include parameters that specify the transaction's behaviour.

3.1. Transaction Behaviour
Transactions control access to data by simultaneously executing applications. There are several parameters which define
exactly how the transaction behaves when multiple applications attempt to access the same data at the same time. These
behaviours fall into three groups; access mode, isolation level and lock resolution. Access mode determines whether the
transaction can read or read and write data. Isolation level determines how the transactions views records committed by
other simultaneous transactions. Lock resolution determines whether or not the transaction waits for resources locked by
other simultaneous transactions.

If a transaction is started without specifying any behaviour parameters, it is started with the following default behaviour:
READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

3.1.1. Access Mode
Access mode is controlled by the READ ONLY and READ WRITE parameters in the SET TRANSACTION statement.
READ ONLY allows the transaction to select data from a table but it cannot insert, update or delete table data.

If your application is only going to read data it is good practice the start your transaction using the READ ONLY property.
This will ensure that your application has the least possible impact on other, concurrently executing transactions.

3.1.2. Lock Resolution
A transaction can choose to wait for resources locked by another transaction to be released or it can choose to fail
immediately if a lock is detected. This behaviour is controlled by the lock resolution parameters WAIT and NO WAIT.

If you choose WAIT, the transaction will wait until locked resources are released and will then try to reacquire the lock. If
you choose NO WAIT, the transaction will fail with a lock conflict error immediately when a lock is detected. If a NO
WAIT transaction fails, it is your responsibility to rollback the transaction and try again or give up and report the error.

3.1.3. Isolation Level
Isolation level determines how your application views changes made by other, concurrently executing transactions. There
are three main isolation levels; SNAPSHOT, SNAPSHOT TABLE STABILITY and READ COMMITTED.

SNAPSHOT isolation provides a view of the database at the moment the transaction starts. Your transaction will be
prevented from seeing changes made by other transactions. This isolation level is also known as repeatable read because
you can read the same record multiple times and be assured that you will always see the same version of the record.

SNAPSHOT TABLE STABILITY isolation provides the same view of the database as SNAPSHOT while, at the same
time, preventing other transactions from making changes to tables that your transactions is reading and updating. Other
transactions are allowed to read data from tables that your transaction is reading and updating.

READ COMMITTED isolation allows your transaction to read the most recent version of a row committed by other active
transactions. There are two further options controlling the behaviour of READ COMMITTED transactions;
RECORD_VERSION and NO RECORD_VERSION. When RECORD_VERSION is specified your transaction reads
the most recently committed version of a row even if there is a newer, uncommitted version present in the database. When

14 Embedded SQL Guide for RM/Cobol

NO RECORD_VERSION is specified and a newer, uncommitted version of a row is present your transaction will wait
until that version is committed if the WAIT parameter is specified. It will immediately report a deadlock error if a newer,
uncommitted version is present and the NO WAIT parameter is specified.

3.2. Starting a Transaction
Before any data can be accessed from an open database a transaction must be started. In the absence of the gpre -manual
command line argument, transactions will be started automatically whenever an SQL statement which requires a transaction
is executed. If the gpre -manual command line argument was specified or if you want to explicitly start a transaction you
use the SET TRANSACTION statement.

3.2.1. SET TRANSACTION
SET TRANSACTION [NAME transaction_name]
 [READ WRITE | READ ONLY]
 [WAIT | NO WAIT]
 [[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY] |
 READ COMMIT [[NO] RECORD_VERSION]}]
 [RESERVING <reserving_clause>]
 [USING dbhandle [, dbhandle] ...];
<reserving_clause> = table [, table] ...
 [FOR [SHARED | PROTECTED] {READ | WRITE}]
 [, <reserving_clause>] ...
The NAME clause specifies a name for the transaction. transaction_name is a host variable that must be defined as
PIC S9(10) USAGE BINARY(4). transaction_name must be initialized to zero before it is first referenced in a SET
TRANSACTION statement. transaction_name can be used in subsequent SQL statements to force them to use the
named transaction rather than the default.

The READ WRITE clause indicates that the transaction can read and write tables. This is the default.

The READ ONLY clause indicates that the transaction can only read tables.

The WAIT clause indicates that the transaction will wait for access if it encounters a lock conflict with another
transaction. This is the default.

The NO WAIT clause indicates that the transaction will return an error immediately if it encounters a lock conflict with
another transaction.

The ISOLATION LEVEL clause specifies the behaviour of this transaction when attempting to access the same tables
as other simultaneous transactions. The words ISOLATION LEVEL themselves are optional. SNAPSHOT is the
default setting. See the preceding section for a more complete discussion of isolation levels.

The RESERVING clause enables a transaction to register its desired level of access for specified tables when the
transaction starts instead of when the transaction attempts its operations on that table.

PROTECTED WRITE allows the current transaction to write to the table and blocks all other writes.

PROTECTED READ disallows writing to the table by any transaction, including the current one.

SHARED WRITE allows any SNAPSHOT read-write or READ COMMITTED read-write transaction to update
rows in the table as long as no transaction requests exclusive use.

SHARED READ allows any read-write transaction to update the table.

The USING clause limits the number of databases that the transaction can access.

Examples

Start a read, write transaction that can read only the most recently committed version of rows and will wait for lock to be
released before continuing.

EXEC SQL
 SET TRANSACTION READ WRITE WAIT READ COMMITTED NO RECORD_VERSION;

Embedded SQL Guide for RM/Cobol 15

Start a transaction which will be the only transaction allowed to update the LOADS table.
EXEC SQL
 SET TRANSACTION READ WRITE WAIT SNAPSHOT RESERVING LOADS
 FOR PROTECTED WRITE;

3.3. Saving Your Changes
When a transaction's tasks are complete the transaction must be ended to set the database to a consistent state and to make
any changes made by the transaction permanent. Successful transactions are ended by the COMMIT statement.

The COMMIT statement:

Writes all updates to the database.

Makes the transaction's updates visible to other transactions.

Closes open cursors, unless the RETAIN clause is given.

3.3.1. COMMIT
COMMIT [WORK] [TRANSACTION transaction_name] [RELEASE] [RETAIN [SNAPSHOT]];
WORK is an optional word used for compatibility with other relational databases which require it.

The TRANSACTION clause causes the transaction named transaction_name to be committed to the database. If this
clause is omitted the default transaction is committed.

The RELEASE clause disconnects the application from the database after the commit is complete. This clause is only
available for compatibility with previous versions on Interbase. To close a database use the DISCONNECT statement.

The RETAIN [SNAPSHOT] clause commits the changes and retains the current transaction context. This has the effect
of leaving currently open cursors open rather than closing them. Be aware the use of the RETAIN clause leaves the
transaction in an active state. Leaving a READ WRITE transaction open for long periods of time will have a negative
impact on system performance. Every transaction must eventually be closed by a COMMIT statement without a
RETAIN clause or by a ROLLBACK statement.

Examples

Commit a transaction and close all open cursors.
EXEC SQL
 COMMIT;

Commit a transaction leaving all cursors open.
EXEC SQL
 COMMIT RETAIN;

3.4. Discarding Your Changes
When an error is encountered during transaction processing and you want to discard your changes and return the database to
the state it had prior to the start of the transaction you use the ROLLBACK statement.

The ROLLBACK statement:

Discards all changes made to the database since the transaction was started.

Closes all open cursors.

3.4.1. ROLLBACK
ROLLBACK [WORK] [TRANSACTION transaction_name] [RELEASE];
WORK is an optional word used for compatibility with other relational databases which require it.

The TRANSACTION clause causes the transaction named transaction_name to be rolled back. If this clause is
omitted the default transaction is rolled back.

The RELEASE clause disconnects the application from the database after the rollback is complete. This clause is only
available for compatibility with previous versions on Interbase. To close a database use the DISCONNECT statement.

16 Embedded SQL Guide for RM/Cobol

Examples

Rollback the default transaction.
EXEC SQL
 ROLLBACK;

Rollback the transaction named TRANS2.
EXEC SQL
 ROLLBACK TRANSACTION TRANS2;

Embedded SQL Guide for RM/Cobol 17

4. Accessing the Data
The majority of SQL statements in an embedded application are devoted to reading or modifying existing data or adding
new data to the database. This chapter describes the types of data recognized by Firebird and how to retrieve, modify, add
or delete data using the following SQL statements:

SELECT statements read or retrieve existing data from a database.

INSERT statements write new rows of data to a table.

UPDATE statements modify existing rows of data in a table.

DELETE statements delete existing rows of data from a table.

This chapter will describe the basics of using these statements to retrieve and update data. A complete discussion of SQL is
outside the scope of this manual. For more information see the Interbase Language Reference by Borland or The Firebird
Book by Helen Borrie.

4.1. Supported Data Types
Firebird supports thirteen fundamental data types which are described in the following table.

18 Embedded SQL Guide for RM/Cobol

Data Type Size Range/Precision Description
BIGINT 64 bits  2-63 to 263 - 1  Signed 64 bit integer. Only

available in dialect 3 databases.

BLOB Variable  None

 Blob segment size is limited to
32K

 Dynamically sizable data type
for holding graphics, sound, etc.

CHAR(n) n characters  1 to 32,767 bytes

 Character set character size
determines the number of
characters that can fit in 32K

 Fixed length text string

DATE 64 bits  1 Jan 100 BC to 29 Feb 32768 CE  In dialect 3 databases this type
holds a date only. In dialect 1
databases this type is equivalent
to TMESTAMP.

DECIMAL(precision, scale) 16, 32 or 64
bits

 precision = 1 to 18 digits. Column
must be able to store at least this
many digits.

 scale = 1 to 18 digits. Specifies the
number of decimal places. Must
be less than or equal to precision.

 Numeric data type with scale
digits to the right of the decimal
point.

 Example: DECIMAL(10,3)
holds numbers accurately in the
following format: ppppppp.sss

DOUBLE PRECISION 64 bits  2.225x10-308 to 1.797x10308  IEEE double precision floating
point number with maximum 15
digits precision. Use when
range of number to be stored is
not know in advance.

FLOAT 32 bits  1.175x10-38 to 3.492x1038  IEEE single precision floating
point number with maximum 7
digits precision. Use when
range of number to be stored is
not know in advance.

INTEGER 32 bits  -2,147,483,648 to 2,147,483,647  Signed 32 bit integer.

NUMERIC(precision, scale) 16, 32 or 64
bits

 precision = 1 to 18 digits. Column
must be able to store exactly this
many digits.

 scale = 1 to 18 digits. Specifies the
number of decimal places. Must
be less than or equal to precision.

 Numeric data type with scale
digits to the right of the decimal
point.

 Example: DECIMAL(10,3)
holds numbers accurately in the
following format: ppppppp.sss

SMALLINT 16 bits  -32,768 to 32,767  Signed 16 bit integer

TIME 64 bits  00:00 AM to 23:59:59.9999 PM  Time of day. Not available in
dialect 1 databases.

TIMESTAMP 64 bits  1 Jan 100 00:00:00 BC to 29 Feb
32768 23:59:59.9999 CE

 Date and time of day. Not
available in dialect 1 databases,
use DATE instead.

VARCHAR(n) n characters  1 to 32,767 bytes

 Character set character size
determines the number of
characters that can fit in 32K

 Variable length text string

Table 1 Firebird Data Types

When reading data from the database or writing data to the database, gpre always moves your application's data through

Embedded SQL Guide for RM/Cobol 19

temporary variables that are created by gpre and are guaranteed to be the proper size and type to hold the data. These
temporary variables are then moved to and from your host variables by gpre using the Cobol MOVE verb. This means that,
in general, you can define your variables to be whatever size and format you desire as long as host variables for numeric
fields can be expected to correctly receive values from and send values to numeric data items according to the rules of the
Cobol MOVE verb.

The exception to this rule is date fields. Date fields will be moved into your host variables in two different ways according
to the setting of the gpre -dfm command line argument. If the -dfm argument is omitted your host variable will receive a
raw, 64 bit date field in Firebird internal format. Your application will then have to use the isc_encode_date and
isc_decode_date functions to translate the date to and from Cobol format. If the -dfm argument is specified then the date
will be moved to and from your host variable according to the format string given to the -dfm argument. The format string
controls the formatting of dates according to the presence of format characters in the string. yy or yyyy indicates the
position of the year, mm the month, dd the day, hh the hour, nn the minutes and ss the seconds. For example, -dfm
yyyymmddhhnnss would cause Firebird to format a DATE column as a four digit year, two digit month, two digit day of
the month, two digit hour, two digit minutes and two digit seconds.

4.2. SQL Expressions
All SQL data manipulation statements support SQL expressions. Expressions are used for comparing and evaluating
columns, constants and host variables to produce a single value.

For example, the WHERE clause is used to specify a search condition that determines if a row qualifies for retrieval or
update. The search condition is an SQL expression. When an expression is used as a search condition it evaluates to a value
of True or False.

Expressions can also be used to calculate values that will be inserted or updated into a column. When inserting or updating
a numeric value the expression is usually arithmetic, such as multiplying one number by another. When inserting or
updating a string value the expression can concatenate two strings to produce a single, new string.

20 Embedded SQL Guide for RM/Cobol

Element Description
Column names Columns from specified tables.

Host variables Program variables containing changeable values. Host variables must be preceded by a colon (:).

Constants Hard coded numbers or strings. i.e. 12345 or 'string value'.

Concatenation operator ||, used to concatenate two strings.

Arithmetic operators +, -, * and /

Logical operators The keywords NOT, AND and OR.

Comparison operators <, >, <=, >=, = and <>. Other, more specialized comparison operators include ALL, ANY,
BETWEEN, CONTAINING, EXISTS, FIRST, IN, IS, LIKE, NULL, SINGULAR, SOME, and
STARTING WITH.

COLLATE clause Comparison of text strings can sometimes take advantage of the COLLATE clause to force the
way the strings are compared.

Stored procedures Reusable SQL statement blocks that can receive and return parameters and that are stored as part
of a database's metadata.

Subqueries SELECT statements that return values that are to be compared with the result set of the main
SELECT statement, or return values that are to be inserted into columns in an INSERT
statement.

Parenthesis Used to group expressions into hierarchies.

Date literals String values that can be entered in quotes and interpreted as date values. Possible values are
'NOW', 'TODAY', 'YESTERDAY' and 'TOMORROW'.

Context variables A number of system maintained variable values in the context of the current client connection.
There is a whole collection of these, of which the following are applicable to to embedded SQL
applications: CURRENT_DATE, CURRENT_ROLE, CURRENT_SESSION,
CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_TRANSACTION,
CURRENT_USER and USER.

Table 2Elements of SQL Expressions

4.2.1. Precedence of Operators
Precedence determines the order in which operators are evaluated in an expression. Operators are grouped into four main
types which are evaluated using the following precedence; concatenation, arithmetic, comparison and logical. When an
expression contains several operators of the same type, those operators are evaluated from left to right unless there is a
conflict where two operators of the same type affect the same values. When there is a conflict, operator precedence within
the type determines the order of evaluation.

4.2.2. String Concatenation
The concatenation operator, ||, enables a single character string to be built from two or more character strings. Character
strings can be constants or values retrieved from a column.

Example
01 WS-TEXT PIC X(80).
...
EXEC SQL
 SELECT LAST_NAME || ', ' || FIRST_NAME
 INTO :WS-TEXT
 FROM ACCOUNTS;

Embedded SQL Guide for RM/Cobol 21

4.2.3. Arithmetic Operators
Firebird supports the following arithmetic operators:

Multiplication *
Division /
Addition +
Subtraction -

Arithmetic expressions are evaluated left to right, except when ambiguities arise. In these cases, Firebird evaluates
multiplication and division first followed by addition and subtraction.

Example
1 + 4 * 8

This yields the result 33.

4.2.4. Comparison Operators
Comparison operators test a specific relationship between a value to the left of the operator and a value or range of values to
the right of the operator. Values compared must evaluate to the same data type unless the CAST() function is used to
translate one data type to a different one for comparison. Every test produces a result that can be either True or False.

Firebird supports the following comparison operators:

Equality =
Inequality <>
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=

Firebird also supports some more specialized comparison operators. These are:

BETWEEN
CONTAINING
IN
LIKE
IS NULL
STARTING WITH
ALL
ANY or SOME
EXISTS
SINGULAR

4.2.4.1. BETWEEN
BETWEEN tests whether a value falls within a range of values. The range of values is inclusive, that is, the range includes
both the low value and the high value. The complete syntax for the BETWEEN operator is:

<value1> [NOT] BETWEEN <value2> AND <value3>
Example

The following cursor declaration retrieves all load numbers where the shipper's zip code falls on or between 19400 and
19499.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_SHIP_ZIP BETWEEN '19400' AND '19499';

4.2.4.2. CONTAINING
CONTAINING tests to see if a string value contains a string literal. String comparisons are case insensitive. “String”,
“STRING” and “string” are equivalent for CONTAINING. The complete syntax for the CONTAINING operator is:

22 Embedded SQL Guide for RM/Cobol

<value1> [NOT] CONTAINING '<string>'
Example

The following cursor declaration retrieves all load numbers where the shipper's name contains “ZEHRS”.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_SHIP_NAME CONTAINING 'ZEHRS';

4.2.4.3. IN
IN tests to see if a value equals at least one value in a list of values. A list is either a set of values separated by commas and
enclosed by parentheses or the results of a subquery. The complete syntax for the IN operator is:

<value> [NOT] IN (<value1> [, <value2] ...)
OR
<value> [NOT] IN (<subquery>)

Example

The following cursor retrieves the shipper names for loads 100101, 100102 and 100103.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_SHIP_NAME FROM LOADS
 WHERE LD_LOAD_NUMBER IN (100101, 100102, 100103);

The following cursor retrieves the shipper names for all loads whose zip code is 19462.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_SHIP_NAME FROM LOADS
 WHERE LD_LOAD_NUMBER IN (SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_SHIP_ZIP = 19462);

4.2.4.4. LIKE
LIKE tests a value against a case sensitive string containing wildcards. Wildcards are characters that substitute for a single,
variable character or a number of variable characters. LIKE recognizes two wildcard symbols:

% (percent) substitutes for a string of zero or more characters

_ (underscore) substitutes for a single character

The complete syntax for the LIKE operator is:
<value1> [NOT] LIKE <value2> [ESCAPE 'character']

To test a value to see if it contains one of the wildcard characters, precede the wildcard character with the character given in
the ESCAPE clause.

Example

The following cursor retrieves all loads whose shipper's name begins with “3M”.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_SHIP_NAME LIKE '3M%';

The following cursor retrieves all loads whose shipper's name contains an underscore.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_SHIP_NAME LIKE '%@_%' ESCAPE '@';

Embedded SQL Guide for RM/Cobol 23

4.2.4.5. IS NULL
IS NULL tests for the absence of a value in a column. The complete syntax for IS NULL is:

<value> IS [NOT] NULL
Example

The following cursor retrieves all loads which have no value in the pro number column.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_PRO_NUMBER IS NULL;

4.2.4.6. STARTING WITH
STARTING WITH tests a value to see if it begins with a case sensitive string. The complete syntax of the STARTING
WITH operator is:

<value> [NOT] STARTING WITH <string>
Example

The following cursor retrieves all loads whose shipper's name begins with “3M”.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_SHIP_NAME STARTING WITH '3M';

4.2.4.7. ALL
ALL tests that a condition is true when compared to every value in a list returned by a subquery. The complete syntax of the
ALL operator is:

<value> <comparison_operator> ALL (<subquery>)
Example

The following cursor retrieves all loads where the total revenue is greater than all loads whose shipper zip code begins with
“194”.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE LD_TTL_REVENUE > ALL (SELECT LD_TTL_REVENUE FROM LOADS
 WHERE LD_SHIP_ZIP STARTING WITH '194');

4.2.4.8. ANY or SOME
ANY or SOME tests that a condition is true when compared to any value in a list returned by a subquery. The complete
syntax for the ANY operator is:

<value> <comparison_operator> {ANY | SOME} (<subquery>)
Example

The following cursor retrieves the driver's first and last names for any driver currently assigned to loads whose shipper's zip
code begins with “194”.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT OPDRV_LAST_NAME, OPDRV_FIRST_NAME FROM OP_DRIVERS
 WHERE OPDRV_ID = ANY (SELECT LD_DRIVER1 FROM LOADS
 WHERE LD_SHIP_ZIP STARTING WITH '194');

4.2.4.9. EXISTS
EXISTS tests that there is at least one qualifying row meeting the criteria for the search condition given by a subquery. This
is the fastest possible way to test for the existence of a value in a table. The complete syntax of the EXISTS operator is:

24 Embedded SQL Guide for RM/Cobol

[NOT] EXISTS (<subquery>)
Example

The following cursor retrieves all loads where the shipper's state does not exist in the state code table.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE NOT EXISTS (SELECT * FROM CT_STATE
 WHERE CTST_CODE = LD_SHIP_STATE);

4.2.4.10. SINGULAR
SINGULAR tests that there is exactly one qualifying row meeting the criteria for the search condition given by a subquery.
The complete syntax for the SINGULAR operator is:

[NOT] SINGULAR (<subquery>)
Example

The following cursor selects all loads which have one line item.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LD_LOAD_NUMBER FROM LOADS
 WHERE SINGULAR (SELECT * FROM LD_STOP_ITEMS
 WHERE LDS_LOAD_NUMBER = LD_LOAD_NUMBER);

4.2.5. Logical Operators
Firebird provides three logical operators: NOT, AND and OR.

NOT evaluates to the negative of the condition to which it is applied and has the highest precedence.

AND evaluates to True if both of the conditions to which it applies are True. It evaluates to False otherwise. It has
the next highest precedence after NOT.

OR evaluates to True if either of the conditions to which is applies is True. It evaluates to False otherwise. It has the
same precedence as AND.

Example
NOT COLUMN1 = COLUMN2

Evaluates to True if COLUMN1 is not equal to COLUMN2.
COLUMN1 = COLUMN2 AND COLUMN3 = COLUMN4

Evaluates to True if both COLUMN1 equals COLUMN2 and COLUMN3 equals COLUMN4.
COLUMN1 = COLUMN2 OR COLUMN3 = COLUMN4

Evaluates to True if either COLUMN1 equals COLUMN2 or COLUMN3 equals COLUMN4.

4.2.6. NULLs in Expressions
NULL values can be quite a conceptual challenge for those who have previously worked in environments, such as Cobol,
that don't have NULL values. In SQL, any data item will be stored with a NULL indicator if no value is ever provided for it
in a DML statement or through a default. A NULL is not equivalent to a blank text column or a zero numeric column.
NULL values are treated quite differently in expressions than blank or zero values. Comparisons that encounter NULL on
either the left or right side of the operator always follow SQL rules of logic and evaluate the result of the comparison as
NULL and return False.

NULL is not a value, so it cannot be equal to anything. For example, an expression such as:
WHERE (COL1 = NULL)

will return an error because the equality operator is not value for NULLs. The correct expression to test for NULLs is:
WHERE (COL1 IS NULL)

Embedded SQL Guide for RM/Cobol 25

Two NULLs are not equal to each other. Be aware of the case where an expression must resolve to:
WHERE (<null_value> = <null_value>)

because False is always the result when two NULLs are compared.

In an expression where a column identifier “stands in” for the current value of a data item, a NULL operand in a calculation
will produce NULL as the result of the calculation. For example, the following:

UPDATE TABLEA SET COL4 = COL4 + COL5;
will set COL4 to NULL if COL5 is NULL.

In aggregate expressions using operators like SUM(), AVG(), and COUNT() rows containing NULL are ignored.

Semmantically, if an expression returns NULL, it is neither false nor true. However, in SQL comparisons resolve as either
true or false, a comparison that does not evaluate to true is false. This can trip you up if you are using NOT in expressions
that involve NULLs because:

NOT <condition evaluating to false> evaluates to true
but

NOT <condition evaluating to NULL> evaluates to NULL
Example

NOT (COLUMNA = COLUMNB)
If both COLUMNA and COLUMNB have values and they are not equal, the inner expression evaluates to false. The
expression NOT (false) returns true.

However, if either of the columns is NULL, the inner expression evaluates to NULL. The expression NOT (NULL)
evaluates to NULL and returns NULL.

4.2.7. Computed Columns
SQL is not limited to returning the values of columns as the result of a query, it can also return the value of expressions.
Output columns which are created using expressions are referred to as computed columns. The value of a computed column
is always read only since it is not a stored value and, as such, cannot be updated to a new value. Any expression that returns
a single value can be used to specify a computed column.

To enable you to provide run time names for computed columns Firebird supports the SQL column aliasing standard, which
allows any column to be output using an alias. For example, the following:

SELECT COLUMN2 || ',' || COLUMN3 AS COMPUTED_COLUMN FROM TABLE
returns a column concatenating two other column values separated by a comma and names it COMPUTED_COLUMN.

4.2.8. Built in Functions
Firebird comes with a minimal set of internally implemented SQL functions. It is also possible to extend Firebird with user
written, external functions called UDFs (User Defined Functions).

26 Embedded SQL Guide for RM/Cobol

Function Type Description
CAST() Conversion Converts a column from one data type to another.

EXTRACT() Conversion Extracts date and time parts from DATE, TIME and TIMESTAMP values

SUBSTRING() String Retrieves any sequence of characters from a string.

UPPER() String Converts a string to all upper case characters.

GEN_ID() General Returns the value from a generator.

AVG() Aggregating Calculates the average of a set of values.

COUNT() Aggregating Returns the number of rows that satisfy a query's search condition.

MAX() Aggregating Retrieves the maximum value from a set of values.

MIN() Aggregating Retrieves the minimum value from a set of values.

SUM() Aggregating Retrieves the total of a set of numeric values.

CASE() General Returns the value of an expression based on the value of a group of mutually exclusive
conditions.

COALESCE() General Returns the value of the first non-null argument.

NULLIF() General Returns either a a value or NULL depending on whether or not the two arguments match.

Table 3Internal Functions

4.2.8.1. CAST
The CAST function allows a value to be converted from one data type to another, compatible data type. The syntax of the
CAST function is:

CAST(<value> AS <datatype>)
From Data Type To Data Type

Numeric Character, varying character, date

Character, varying character Numeric, date

Date Character, varying character, date

Table 4Compatible Data Types for CAST()

Example

In the following WHERE clause, a character value, INTERVIEW_DATE, is converted to a date data type for comparison to
a date value, HIRE_DATE.

WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE)

4.2.8.2. EXTRACT
The EXTRACT function extracts part of a DATE, TIME or TIMESTAMP field as a number. The syntax of the
EXTRACT function is:

EXTRACT({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND | WEEKDAY | YEARDAY}
 FROM <value>)

All parts return a SMALLINT except for SECOND which returns DECIMAL(6,4).

Example

The following statement returns the shipper's appointment date as three numeric columns:
EXEC SQL
 SELECT EXTRACT(YEAR FROM LD_SHIP_APPT_LOW) AS YEAR,
 EXTRACT(MONTH FROM LD_SHIP_APPT_LOW) AS MONTH,
 EXTRACT(DAY FROM LD_SHIP_APPT_LOW) AS DAY
 FROM LOADS;

Embedded SQL Guide for RM/Cobol 27

4.2.8.3. SUBSTRING
The SUBSTRING function returns a string of consecutive characters from another string. The syntax of the SUBSTRING
is:

SUBSTRING(<value> FROM <startpos> [FOR <length>])
SUBSTRING returns characters from <value> beginning with the character at <startpos>. If the optional FOR <length>
clause is given the function will return the lesser of <length> bytes or the number of bytes to the end of <value>. If the FOR
clause is omitted the function returns the number of bytes from <startpos> to the end of <value>. The first character of
<value> is position 1.

Example

The following function call will return all characters from character position 4 to the end of COLUMN.
SUBSTRING(COLUMN FROM 4)

The following function call will return up to 50 characters from COLUMN starting at position 4.
SUBSTRING(COLUMN FROM 4 FOR 50)

4.2.8.4. UPPER
The UPPER function converts a string value to all upper case characters. The syntax for UPPER is:

UPPER(<value>)
Example

The following function call returns “THIS IS A TEST”.
UPPER('This is a test')

4.2.8.5. GEN_ID
The GEN_ID function calculates and returns a value from a generator. Generators are a means of generating a series of
numbers which are ideally suited to use as autoincrementing keys. The syntax of the GEN_ID function is:

GEN_ID(<generator>, <increment>)
GEN_ID returns the last value of <generator> plus the value of <increment>. It then updates <generator> to the value just
returned.

Example

If the generator named “MyGenerator” has a value of 4 then the following function call would return 6 and set the value of
“MyGenerator” to 6.

GEN_ID('MyGenerator', 2);

4.2.8.6. AVG
The AVG function returns the average of the values of a single column returned by a query. The syntax of the AVG
function is:

AVG(<column>)
Example

The following select statement returns the average revenue of all loads:
SELECT AVG(LD_TTL_REVENUE) FROM LOADS;

4.2.8.7. COUNT
The COUNT function returns the number of rows that satisfy a query's search condition. The syntax of the COUNT
function is:

COUNT({* | [ALL] <column> | DISTINCT <column>})
“*” returns the number of rows in the result set, including NULL values.

28 Embedded SQL Guide for RM/Cobol

ALL returns the number of non-NULL values in <column>

DISTINCT returns the number of unique, non-NULL values in a column

Example

The following select statement returns the number of rows in the loads table.
SELECT COUNT(*) FROM LOADS;

4.2.8.8. MAX
The MAX function returns the maximum value from a set of values. The syntax of the MAX function is:

MAX(<column>)
Example

The following select statement returns the maximum revenue of all loads.
SELECT MAX(LD_TTL_REVENUE) FROM LOADS;

4.2.8.9. MIN
The MIN function returns the minimum value from a set of values. The syntax of the MIN function is:

MIN(<column>)
Example

The following select statement returns the minimum revenue of all loads.
SELECT MIN(LD_TTL_REVENUE) FROM LOADS;

4.2.8.10. SUM
The SUM function returns the total of a set of numeric values. The syntax of the SUM function is:

SUM(<column>)
Example

The following select statement returns the total revenue for all loads.
SELECT SUM(LD_TTL_REVENUE) FROM LOADS;

4.2.8.11. CASE
The CASE function returns a value determined by the outcome of evaluating a group of mutually exclusive conditions. The
syntax of the CASE function is:

CASE {<value1> | <empty_clause>}
 WHEN {NULL | <value2> | <condition1>} THEN {<result1> | NULL}
 WHEN ... THEN {<result2> | NULL}
 [WHEN ... THEN {<resultn> | NULL}] ...
 [ELSE {<resultn + 1> | NULL}]
END
WHEN ... THEN are the keywords in each condition / result clause. At least one condition / result clause is required.

ELSE precedes an optional “last resort” clause, to be returned if none of the conditions in the preceding clauses is met.

<value1> is the identifier of the column value that is to be evaluated. It can be omitted, in which case each WHEN
clause must be a condition that references the same column identifier.

<value2> is the value that is matched against <value1>. It is either a literal or an expression that evaluates to a data type
that is compatible with <value1>'s data type.

<condition1> is a conditional expression which must be used when <value1> is omitted. In this case, both <value1>
and <value2> must be contained in <condition1>.

<result1> is the value that will be returned if <value1> matches <value2>.

Embedded SQL Guide for RM/Cobol 29

Example

The following select statement will return an English language description of the unit types of all units in the OPERATIONS
table.

SELECT CASE OP_UNIT_TYPE
 WHEN 1 THEN 'Tractor'
 WHEN 2 THEN 'Trailer'
 WHEN 5 THEN 'Driver'
 ELSE 'Unknown type'
 END
 FROM OPERATIONS;

The following select statement also returns an English language description of the unit types of all units in the
OPERATIONS table.

SELECT CASE
 WHEN OP_UNIT_TYPE = 1 THEN 'Tractor'
 WHEN OP_UNIT_TYPE = 2 THEN 'Trailer'
 WHEN OP_UNIT_TYPE = 5 THEN 'Driver'
 ELSE 'Unknown type'
 END
 FROM OPERATIONS;

4.2.8.12. COALESCE
The COALESCE function evaluates a series of expressions. The value of the first expression to return a non-null value is
returned. The syntax of the COALESCE function is:

COALESCE(<value1> [, <value2> ...])
Example

The following select statement returns either a load's pro number or the string 'Not billed' if no pro number exists.
SELECT COALESCE(LD_PRO_NUMBER, 'Not billed') FROM LOADS;

4.2.8.13. NULLIF
The NULLIF function returns either the value of its first argument or NULL if the value of the first argument matches the
value of the second argument. The syntax of the NULLIF function is:

NULLIF(<value1>, <value2>)
Example

The following update statement sets the value LD_TTL_REVENUE to NULL if it equals zero.
UPDATE LOADS SET LD_TTL_REVENUE = NULLIF(LD_TTL_REVENUE, 0);

4.3. Retrieving Data
All data stored in Firebird tables is retrieved in only one way, by querying it using a SELECT statement. A query defines a
logical collection of data items arranged in order from left to right in one or more columns known as a set. The data items
may come from a single table or multiple tables. A query may consist of a single row or multiple rows. The rows can be in
no particular order or they can be returned as a sorted set.

4.3.1. The SELECT statement
SELECT [TRANSACTION transaction_name]
 [FIRST (m)] [SKIP (n)]
 [DISTINCT | ALL] {* | <val> [, <val> ...]}
 [INTO :var [, :var ...]]
 FROM {table | view | stored_procedure}
 [[[INNER] | {LEFT | RIGHT | FULL} [OUTER]]
 JOIN {table | view | stored_procedure}
 ON <join_condition> [JOIN ...]]
 [WHERE <search_condition>]

30 Embedded SQL Guide for RM/Cobol

 [GROUP BY col [, col ...]]
 [HAVING <search_condition>]
 [UNION <select_expression>]
 [PLAN <plan_expression>]
 [ORDER BY <order_list>]
 [FOR UPDATE] [OF col [, col ...] [WITH LOCK]
<val> = expression [AS alias] | *
<join_condition> = a conditional expression relating columns from the table to
be joined to the master table. Values from the rows which match the conditions
will be included in the result set.
<search_condition) = a conditional expression specifying which rows are to be
included from the master table.
<selection_condition> = a subquery specifying additional rows to be appended to
the result set.
<plan_expression> = a clause which tells the database manager which indices
should be used to evaluate the query. This clause is rarely used and is not
discussed in this manual.
<order_list> = {col | integer} [ASC[ENDING] | DESC[ENDING]]
 [, <order_list>]

If you can't make much sense out of the formal definition of the SELECT statement, don't worry. Each clause will be
discussed in detail in the following sections.

4.3.2. Named Transactions
If your application is making use of named transactions, you can tell the database manager which transaction to use to
control the SELECT statement by including the optional TRANSACTION clause. The TRANSACTION keyword is
simply followed by a transaction name that has been declared in a previous SET TRANSACTION statement.

4.3.3. Set Qualifiers
The optional set qualifiers FIRST, SKIP, ALL and DISTINCT can be included to govern the inclusion or suppression of
rows in the result set once they have met all other conditions.

ALL is the default qualifier and is usually omitted. It returns all rows which meet the search conditions to the result set.

The DISTINCT qualifier suppresses all duplicate rows in the result set. All columns in two rows must be identical for them
to be considered duplicates.

The FIRST (m) and SKIP (n) qualifiers provide the means to include the first m rows of a result set and to skip the first n
rows of the result set respectively. The arguments m and n are integers or expressions that evaluate to integers.

Example

The following cursor returns 5 rows starting at row 101 of the result set.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT FIRST (5) SKIP (100) LD_LOAD_NUMBER
 FROM LOADS
 ORDER BY LD_LOAD_NUMBER;

4.3.4. List of Columns
The SELECT statement must return at least one column, which does not have to be part of a table. Each column
specification is really an expression that can return any value an expression can. The asterisk (*) is a special symbol that
returns every column from a table. It is possible to provide an alternate name, or alias, for a column by using the AS clause.
Ambiguous column names can be qualified by prefixing the column name with the appropriate table's alias.

Embedded SQL Guide for RM/Cobol 31

Example

The following cursor returns all rows from the LOADS table.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM LOADS;

The following cursor returns all columns from the LOADS table as well as the tractor id from the OPERATIONS table.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LOADS.*, OPERATIONS.OP_UNIT_ID
 FROM LOADS
 LEFT JOIN OPERATIONS ON OP_ID = LD_TRACTOR;

The following cursor returns the year, month and day from the LD_STATUS_DATE column as separate columns aliased as
STAT_YEAR, STAT_MONTH and STAT_DAY respectively.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EXTRACT(YEAR FROM LD_STATUS_DATE) AS STAT_YEAR,
 EXTRACT(MONTH FROM LD_STATUS_DATE) AS STAT_MONTH,
 EXTRACT(DAY FROM LD_STATUS_DATE) AS STAT_DAY
 FROM LOADS;

4.3.5. Specifying Host Variables for Returned Columns
A SELECT statement that returns a single row (singleton SELECT) returns data to a list of host variables specified by the
INTO clause. Each host variable in the INTO clause must be preceded by a colon (:) and separated from the preceding host
variable by a comma. The number, order and data type of the host variables must correspond to the number, order and data
type of the columns retrieved. Otherwise, overflow, data conversion or compile errors may result.

Example

The following select statement retrieves the load number, status and status date into three host variables.
EXEC SQL
 SELECT LD_LOAD_NUMBER, LD_STATUS, LD_STATUS_DATE
 INTO :WS-LOAD-NUMBER, :WS-STATUS, :WS-STATUS-DATE
 FROM LOADS
 WHERE LD_LOAD_NUMBER = 123456;

4.3.6. Data Source
The FROM clause specifies the source of the data, which may be a table, a view or a stored procedure that has output
arguments. If the statement involves joining two or more structures, the FROM clause specifies the leftmost structure.
Other tables are added to the specification by way on succeeding JOIN clauses.

It is also possible to join multiple tables using the SQL-89 implicit inner join syntax. This involves listing the tables to be
joined on the FROM clause, separated by commas. This method of joining tables is deprecated and should be avoided in
favour of the explicit JOIN syntax.

Example

The following cursor returns all rows from the LOADS table.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM LOADS;

The following cursor returns all rows from the LOADS table as well as the tractor id from the OPERATIONS table.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LOADS.*, OPERATIONS.OP_UNIT_ID
 FROM LOADS
 LEFT JOIN OPERATIONS ON OP_ID = LD_TRACTOR;

32 Embedded SQL Guide for RM/Cobol

The following cursor returns all rows from the LOADS table as well as the tractor id from the OPERATIONS table using the
SQL-89 inner join syntax.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT LOADS.*, OPERATION.OP_UNIT_ID
 FROM LOADS, OPERATIONS
 WHERE OP_ID = LD_TRACTOR;

4.3.7. Search Conditions
The WHERE clause specifies the search conditions which limit the number of rows returned. Search conditions my be a
simple match condition on a single column or a complex expression involving the AND, OR and NOT operators, type
casting, function calls and more. Search conditions can contains references to host variables which can be used to specify
values in the expression at run time. Host variables must be preceded by a colon (:).

Example

The following cursor returns all columns from the LOADS table for rows whose status date is on or between two user
supplied values.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM LOADS
 WHERE LD_STATUS_DATE BETWEEN :WS-LOW-DATE AND :WS-HIGH-DATE;

The above example could be restated as follows:
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM LOADS
 WHERE LD_STATUS_DATE >= :WS-LOW-DATE AND
 LD_STATUS_DATE <= :WS-HIGH-DATE;

4.3.8. Grouping Output
The output from the SELECT statement can be optionally be partitioned into one or more groups that summarize the sets of
data returned at each level. This is accomplished using the GROUP BY clause. These groupings often include aggregating
expressions which work on multiple values, such as totals, averages, row counts and minimum / maximum values. A
grouped select returns one row for each group value. For example, the result set 192, 193, 193, 194, 194 would return one
row for each of 192, 193 and 194.

TIP: It is usually necessary to include an ORDER BY clause in SELECT statements in which you want to group the output.
This is due to the fact that result sets are unordered unless you specify the ORDER BY clause. While GROUP BY will
group the output in this case you will get multiple occurrences of the same group value if it occurs sporadically throughout
the result set. For example, the result set 194, 192, 192, 194 ... would return rows for 194, 192 and 194.

Example

The following cursor returns the total and average revenue for all loads summarized by the first three digits of the zip code.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT SUBSTRING(LD_SHIP_ZIP FROM 1 FOR 3),
 SUM(LD_TTL_REVENUE),
 AVG(LD_TTL_REVENUE)
 FROM LOADS
 GROUP BY SUBSTRING(LD_ZHIP_ZIP FROM 1 FOR 3)
 ORDER BY SUBSTRING(LD_SHIP_ZIP FROM 1 FOR 3);

4.3.9. Limiting Groups Returned
The HAVING clause may be used in conjunction with the GROUP BY clause to include or exclude groups similar to the
way the WHERE clause limits output.

Embedded SQL Guide for RM/Cobol 33

Example

The previous example can be modified to limit the output to groups where the total revenue is greater than zero.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT SUBSTRING(LD_SHIP_ZIP FROM 1 FOR 3),
 SUM(LD_TTL_REVENUE),
 AVG(LD_TTL_REVENUE)
 FROM LOADS
 GROUP BY SUBSTRING(LD_ZHIP_ZIP FROM 1 FOR 3)
 HAVING SUM(LD_TTL_REVENUE) > 0
 ORDER BY SUBSTRING(LD_SHIP_ZIP FROM 1 FOR 3);

4.3.10. Combining Queries
Result sets from two or more queries can be combined into one result set using the UNION clause. Each column in the
queries to be combined must agree in order, data type and size with all of the other queries. By default a UNION result set
suppresses duplicates. To retain the duplicates, include the ALL keyword.

Example

The following cursor returns all loads whose shipper zip code is 19462 or 19463. There are easier ways to do this, this just
servers as an example of the UNION clause.

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT A.*
 FROM LOADS A
 WHERE A.LD_SHIP_ZIP = '19462'
 UNION SELECT B.*
 FROM LOADS B
 WHERE B.LD_SHIP_ZIP = '19463';

4.3.11. Ordering Output
By default, the SELECT statement returns rows unordered. This is true even if the search condition is such that the query
can be satisfied using an index.

The ORDER BY clause allows you to specify an ordering on the result set. The ORDER BY keywords are followed by a
list of columns, by which the result set will be ordered. These columns do not need to appear in the output specification nor
do they need to appear in an index. The result set will be sorted if necessary.

The full syntax of the ORDER BY clause is:
ORDER BY {col | <expression> | degree} [ASC | DESC] [NULLS FIRST | NULLS LAST]
 [, ...]
col is the name of a column.

<expression> is any non-conditional expression

degree is a number representing the position of a value in the SELECT statement's list of returned values. 1 is the first
value.

ASC indicates that the ordering is the be ascending for the column, expression or degree.

DESC indicates that the ordering is the be descending for the column, expression or degree.

NULLS FIRST/LAST indicates that NULL values are to come first/last in the ordering. This feature is available from
Firebird 1.53. forward.

Example

The following cursor returns the all loads, sorted by the shipper's appointment date.
EXEC SQL
 SELECT *
 FROM LOADS

34 Embedded SQL Guide for RM/Cobol

 ORDER BY LD_SHIP_APPT_LOW;

4.3.12. Controlling Row Locking
With Firebird, locking is governed by the relative ages of transactions and the records managed by Firebird's versioning
engine. All locking applies at the row level, except when a transaction is operating in SNAPSHOT STABILITY isolation or
with a table reservation restriction that blocks write access.

The timing of a lock on a row in normal read write activity is optimistic, no locking is in force on any row until the moment
it is actually required. Until an update of the row is posted to the server, the row is free to be “won” by any read write
transaction.

Pessimistic, or preemptive, locking can be applied to sets of rows or to entire tables. The table locking options have already
been introduced in the chapter discussing transaction management. Pessimistic, row level locking is managed by use of the
FOR UPDATE and WITH LOCK clauses. Pessimistic locks are applied at the time the row is read.

It is important to note that a row is not necessarily read when you might think. Under normal circumstances, the Firebird
database manager buffers rows and returns them to the client in blocks. This means that rows are read, and possibly locked,
before your application actually receives them using the FETCH statement. Like most things with Firebird, there are a
couple of exceptions to this. First, if you use UPDATE ... WHERE CURRENT OF to update rows from the cursor,
buffering does not occur. Second, if you are using DSQL and use SELECT ... FOR UPDATE buffering does not occur.
In both of these cases records are read as they are FETCHed.

All locks are released when the transaction is committed or rolled back.

Optimistic locking is conceptually difficult for Cobol programmers who are used to using pessimistic locking. When using
pessimistic locking, lock conflicts are not detected until the row is UPDATEd or until the transaction is committed, at which
time the application will receive a “lock conflict” error. The application must then decide whether to simply rollback the
current transaction and discard the changes or rollback the current transaction and retry the entire transaction again. While
this approach is often more efficient due to reduced potential for deadlocks, it is much more difficult to program then the
pessimistic approach.

As mentioned above, the FOR UPDATE clause is used to disable buffering. FOR UPDATE is only effective if you are
using DSQL. While this clause is allowed in embedded SQL applications, it is ignored and has no effect on buffering.

Normally rows are locked at the time that they are updated using optimistic locking. If you want to use pessimistic locking
and lock rows at the time they are read you must use the WITH LOCK clause.

Example

The following code fragment shows an application that will work in much the same way as a standard Cobol application
using ISAM files and traditional record locking techniques.

EXEC SQL
 SET TRANSACTION READ WRITE READ COMMITTED WAIT NO RECORD_VERSION;
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM LOADS
 FOR UPDATE WITH LOCK;
EXEC SQL
 OPEN C1;
 PERFORM UNTIL EOF
 EXEC SQL
 FETCH C1 INTO :WS-VAR1, :WA-VAR2, ...;
 EXEC SQL
 UPDATE LOADS SET COL1=:WS-VAR1, ...
 WHERE CURRENT OF C1;
 EXEC SQL
 COMMIT RETAIN;
 END-PERFORM.
EXEC SQL
 CLOSE C1;

Embedded SQL Guide for RM/Cobol 35

EXEC SQL
 COMMIT;

4.3.13. Selecting a Single Row
An operation that retrieves a single row of data is called a singleton select. To select a single row from a table or to retrieve
an aggregate value like COUNT() or AVG() use the following SELECT statement syntax.

SELECT col [, col ...]
 INTO :var [, :var ...]
 FROM table
 WHERE <search_condition>

The mandatory INTO clause specifies the host variables where retrieved data is copied for use in the program. Each host
variable's name must be preceded by a colon (:). For each column retrieved there must be on host variable of a
corresponding data type. Columns are retrieved in the order they are listed in the SELECT clause and are copied into host
variables in the order the variables are listed in the INTO clause.

The WHERE clause must specify a search condition that guarantees the only one row is retrieved, otherwise the SELECT
fails.

4.3.14. Selecting Multiple Rows
Many queries specify search conditions that retrieve more than one row. Since host variables can only hold a single column
value at a time, a query that returns multiple rows must build a temporary table called a result set. Rows are extracted from
the result, one at time, in sequential order. The database manager keeps track of the next row to process from the result set
by establishing a pointer to it, called a cursor.

To retrieve multiple rows into a result set, establish a cursor into the table and process the individual rows in the table, SQL
provides the following sequence of statements:

DECLARE CURSOR establishes a name for the cursor and specifies the query to perform.

OPEN executes the query, builds the result set and positions the cursor at the start of the set.

FETCH retrieves a single row from the result set int host variables.

CLOSE releases system resource when all rows are retrieved.

4.3.14.1. Declaring a Cursor
To declare a cursor and specify rows of data to retrieve, use the DECLARE CURSOR statement. DECLARE CURSOR
is a non-executable statement which prepares system resources for the cursor but does not actually perform the query. The
syntax for DECLARE CURSOR is:

EXEC SQL
 DECLARE cursor_name CURSOR FOR
 SELECT ...;
cursor_name is the name of the cursor which is used in subsequent OPEN, FETCH and CLOSE statements.

The SELECT statement inside the DECLARE CURSOR statement is the same as a singleton select except it cannot include
an INTO clause.

4.3.14.2. Opening a Cursor
Before data selected by a cursor can be accessed, the cursor must be opened with the OPEN statement. OPEN activates the
cursor and builds the result set. The syntax of the OPEN statement is:

EXEC SQL
 OPEN cursor_name;
cursor_name is the name of the cursor as declared in a previous DECLARE CURSOR statement.

When Firebird opens the cursor it is positioned to the first row of the result set.

4.3.14.3. Fetching Rows from a Cursor
Once a cursor is opened, rows can be retrieved from the result set using the FETCH statement. FETCH:

36 Embedded SQL Guide for RM/Cobol

Retrieves the next available row from the result set.

Copies the columns for that row into the host variables specified in the INTO clause of the FETCHstatement.

Advances the cursor to the next available row or sets SQLCODE to 100 to indicate that the cursor is at the end of the
result set.

The syntax of the FETCH statement is:
EXEC SQL
 FETCH cursor_name
 INTO :var [[INDICATOR] :indicator] [, :var [[INDICATOR] :indicator] ...]
cursor_name is the name of the cursor as declared in a previous DECLARE CURSOR statement.

var is the name of a host variable which will receive the value of the corresponding column

indicator is the name of a host variable that will receive the NULL status flag for the column.

Every FETCH statement should be tested to see if the end of the result set is reached. You do this by testing the
SQLCODE variable. A value of 100 indicates that the end of the result has been reached. A value of less than zero
indicates that an error was encountered. A value of zero indicates that a row was successfully fetched.

Any column can have a NULL value, except those defined with the NOT NULL or UNIQUE integrity constraints. To
determine if the value returned for a column is NULL, follow each variable named in the INTO clause with the optional
INDICATOR keyword and the name of a PIC S9 variable, called the indicator variable where Firebird will store the NULL
status flag for the column. A value of -1 indicates that the column is NULL. A value of zero indicates that the column is
NOT NULL.

It is only possible to read forward through a cursor. To revisit previously fetched rows, close the cursor and reopen it.

4.3.14.4. Closing a Cursor
When you are done with a cursor it should be closed to free up system resources. To close a cursor use the CLOSE
statement. The syntax of the CLOSE statement is:

EXEC SQL
 CLOSE cursor_name
cursor_name is the name of the cursor as declared in a previous DECLARE CURSOR statement.

4.4. Inserting Data
New rows of data are added to one table at a time with the INSERT statement. INSERT assigns values to columns listed
between the first set of parentheses. Columns not listed are given a NULL value. The INSERT statement allows data
insertion from two different sources; a list of host variables or a SELECT statement that retrieves values from one table to
add to another.

4.4.1. The INSERT Statement
Format 1
INSERT TRANSACTION transaction_name
INTO table_name (col [, col ...])
VALUES (<value> [:indicator] [, <value> [:indicator] ...]);
Format 2
INSERT TRANSACTION transaction_name
INTO table_name (col [, col ...])
SELECT ...;
Use Format 1 to insert a new row using values from your application.

Use Format 2 to insert a new row using values retrieved from another table or tables. This methods adds one new row
for each row returned by the SELECT statement.

transaction_name is the name of a transaction declared by a previous SET TRANSACTION statement.

table_name is the name of the table to receive the new row.

Embedded SQL Guide for RM/Cobol 37

col is the name of a column which is to receive a new value.

<value> is an expression giving a new value. It may be any expression that returns a value compatible with the data type
of the corresponding column.

indicator is a optional host variable containing the NULL status flag of the corresponding column. A value of -1
indicates that the column is NULL, zero indicates NOT NULL.

Example

The following INSERT statement adds one new driver (OP_UNIT_TYPE = 5) to the OPERATIONS table.
EXEC SQL
 INSERT INTO OPERATIONS
 (OP_ID, OP_UNIT_ID, OP_UNIT_TYPE)
 VALUES (:WS-ID, :WS-UNIT-ID, 5);

The following INSERT statement adds a series of new rows to the OPERATIONS table from a temporary table holding
rows to be imported.

EXEC SQL
 INSERT INTO OPERATIONS (OP_ID, OP_UNIT_ID, OP_UNIT_TYPE)
 SELECT TEMP_ID, TEMP_UNIT_ID, TEMP_UNIT_TYPE
 FROM TEMP_TABLE;

4.5. Updating Data
To change values for existing rows of data in a table, use the UPDATE statement. UPDATE changes the values of columns
specified in the SET clause. Columns not appearing in the SET clause are not changed. A single UPDATE statement can
modify any number of rows in a table.

4.5.1. The UPDATE statement
UPDATE TRANSACTION transaction_name table_name
SET col=<value> [, col=<value> ...]
[WHERE <search_condition> | WHERE CURRENT OF cursor_name]

transaction_name is the name of a transaction declared in a previous SET TRANSACTION statement.

table_name is the name of the table to be modified.

col is the name of a column to be modified.

<value> is an expression giving the new value. It may any expression that returns a value compatible with the data type
of the corresponding column.

<search_condition> is a conditional expression which determines which row(s) of the table are to be modified.

cursor_name is the name of a cursor declared in a previous DECLARE CURSOR statement. The most recently fetched
row from this cursor will be modified if this clause is used.

If neither <search_condition> or cursor_name is given then the UPDATE statement will affect every row in the table.

Example

The following UPDATE statement will change the total revenue for load 123456 to $999.00.
EXEC SQL
 UPDATE LOADS
 SET LD_TTL_REVENUE = 999.00
 WHERE LD_LOAD_NUMBER = 123456;

The following UPDATE statement will update the load last read by cursor C1.
EXEC SQL
 UPDATE LOADS
 SET LD_TTL_REVENUE = 999.00
 WHERE CURRENT OF C1;

38 Embedded SQL Guide for RM/Cobol

 The following UPDATE statement will increase the total revenue by 10% for all loads.
EXEC SQL
 UPDATE LOADS
 SET LD_TTL_REVENUE = LD_TTL_REVENUE * 1.10;

4.6. Deleting Data
To remove rows of data from a table, use the DELETE statement. A single DELETE statement can be used to remove any
number of rows from a table.

4.6.1. The DELETE Statement
DELETE TRANSACTION transaction_name
FROM table_name
[WHERE <search_condition> | WHERE CURRENT OF cursor_name]
transaction_name is the name of a transaction declared in a previous SET TRANSACTION statement.

table_name is the name of the table to be modified.

<search_condition> is a conditional expression which determines which row(s) of the table are to be deleted.

cursor_name is the name of a cursor declared in a previous DECLARE CURSOR statement. The most recently fetched
row from this cursor will be deleted if this clause is used.

If neither <search_condition> or cursor_name is given then the DELETE statement will remove all rows from the
table.

Example

The following DELETE statement will remove load 123456 from the LOADS table.
EXEC SQL
 DELETE FROM LOADS
 WHERE LD_LOAD_NUMBER = 123456;

The following DELETE statement will remove the last row fetched by cursor C1.
EXEC SQL
 DELETE FROM LOADS
 WHERE CURRENT OF C1;

The following DELETE statement will remove all rows from the LOADS table.
EXEC SQL
 DELETE FROM LOADS;

Embedded SQL Guide for RM/Cobol 39

5. Accessing Blob Data
A Blob is a dynamically sizable data type that has no specified size and encoding. You can use a Blob to store large
amounts of data of various types, including:

Bitmapped images

Sound and video

Text

Because Blobs are large variably sized object Firebird stores them as a series of segments. These segments are indexed by a
handle that Firebird generates when you create the Blob. This handle is known as the Blob ID and is a 64 bit value
containing a combination of the table and Blob identifiers.

The Blob ID is stored in a column in the table row. The Blob ID points to the first segment of the Blob. You can retrieve
the Blob ID by executing a SELECT statement that specifies the Blob as a target. As follows:

EXEC SQL
 SELECT OP_LOADS FROM OPERATIONS
 INTO :WS-LOADS-ID
 WHERE OP_UNIT_ID = 'TLR1234';

When you create a Blob column in a table, you specify the expected size of the Blob segments for that column. The default
segment length is 80 bytes. For most practical purposes the segment size is irrelevant. The exception to this is embedded
SQL applications. The embedded SQL precompiler, gpre, uses the segment size declared for the column to determine the
size of a temporary buffer that is allocated to hold the Blob segments as they are transferred to and from your application.
The size of the buffer can be overridden by using the MAXIMUM_SEGMENT clause of the DECLARE CURSOR
statement. In any case, you do not want to try to read or write more than the segment size in one operation as you will
overflow the temporary buffer and the results will be unpredictable. The maximum allowed segment size is 32,767 bytes.

5.1. Retrieving Blob Data
Retrieving a Blob involves two steps; retrieving the Blob ID and retrieving the Blob itself. The Blob ID is retrieved by
using a standard singleton select or by using a standard cursor. The Blob data is retrieved using a Blob cursor.

5.1.1. Retrieving the Blob ID
You could retrieve the Blob ID using a singleton select as follows:

01 WS-BLOB-ID PIC S9(19) USAGE BINARY(8);
...
EXEC SQL
 SELECT OP_LOADS
 INTO :WS-BLOB-ID
 FROM OPERATIONS
 WHERE OP_UNIT_ID = 'TLR1234';

Or you could retrieve the Blob ID using a cursor and fetching it as follows:
01 WS-BLOB-ID PIC S9(19) USAGE BINARY(8).
...
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT OP_LOADS
 FROM OPERATIONS; .
EXEC SQL
 OPEN C1; .
 PERFORM UNTIL SQLCODE = 100
 EXEC SQL
 FETCH C1 INTO :WS-BLOB-ID;
 ...
 END-PERFORM.
 EXEC SQL
 CLOSE C1; .

40 Embedded SQL Guide for RM/Cobol

5.1.2. Retrieving the Blob Data
As mentioned previously, Blob data is retrieved using a Blob cursor. This involves several steps; declaring a BLOB READ
cursor, opening the cursor, fetching the data and closing the cursor.

5.1.2.1. Declaring BLOB READ Cursors
DECLARE cursor_name CURSOR
 FOR BLOB READ col
 FROM table
 [FILTER [FROM subtype] TO subtype]
 MAXIMUM_SEGMENT length
cursor_name is the name of the cursor which will be used in subsequent OPEN, FETCH and CLOSE statements.

col is the name of the Blob column.

table is the name of the table containing the Blob.

FILTER ... specifies an optional Blob filter which is used to translate a Blob from one subtype to another. Blob filters
are outside the scope of this manual.

length specifies the size of the temporary buffer used to transfer the Blob data to and from the application. Do not try to
read or write more than length bytes in a single operation or unpredictable results will occur.

Example

The following cursor retrieves the Blob ID for the OP_LOADS column from the OPERATIONS table.
EXEC SQL
 DECLARE C1 CURSOR FOR READ BLOB OP_LOADS
 FROM OPERATIONS;

5.1.2.2. Opening BLOB READ Cursors
OPEN cursor_name USING :var;
cursor_name is the name of a cursor previously declared in a DECLARE CURSOR statement.

var is a host variable containing the Blob ID.

Example

The following code snippet declares and opens a Blob read cursor.
EXEC SQL
 DECLARE C1 CURSOR FOR READ BLOB OP_LOADS
 FROM OPERATIONS;
EXEC SQL
 OPEN C1 USING :WS-BLOB-ID;

5.1.2.3. Fetching Blob Data
FETCH cursor_name
INTO :var [[INDICATOR] :segment_length];
cursor_name is the name of a cursor declared in a previous DECLARE CURSOR statement.

var is the name of the host variable that is to receive the Blob data.

segment_length receives the number of bytes fetched. This may be less then the Blob's segment size when fetching the
last segment of a Blob.

FETCH returns to SQLCODE values of interest:

100 indicates that there are no more Blob segments to retrieve.

101 indicates that the segment was larger that the segment buffer provided by var.

Example

The following code snippet declares a Blob cursor, opens it and fetches all segments of the Blob. Fetching of the Blob ID

Embedded SQL Guide for RM/Cobol 41

itself is omitted in the interests of clarity.
01 WS-BUFFER PIC X(1000).
01 WS-LENGTH PIC 9(4).
01 WS-BLOB-ID PIC S9(19) BINARY(8).
...
Fetch the Blob ID
...
EXEC SQL
 DECLARE C1 CURSOR FOR BLOB READ OP_LOADS
 FROM OPERATIONS
 MAXIMUM_SEGMENT 1000; .
EXEC SQL
 OPEN C1 USING :WS-BLOB-ID; .
 PERFORM UNTIL SQLCODE = 100
 EXEC SQL
 FETCH C1 INTO :WS-BUFFER :WS-LENGTH;
 ...
 END-PERFORM.
EXEC SQL
 CLOSE C1; .

5.1.2.4. Closing BLOB READ Cursors
Blob read cursors are closed in the same way as any other cursor, using the CLOSE statement.

5.2. Updating Blob Data
While it is possible to retrieve Blob data from a table and insert Blob data into a table, it is not possible to directly update a
Blob nor to delete one. A Blob is updated by inserting a new Blob and setting the Blob ID to the value of the new Blob's
ID. This deletes the old Blob and replaces its ID with the new one. A Blob is deleted in one of two ways; by deleting the
row which owns the Blob or by setting the Blob ID to NULL. Inserting a new Blob involves two steps; inserting the Blob
using a Blob insert cursor and updating the table with the new Blob ID.

5.2.1. Inserting Blob Data

5.2.1.1. Declaring BLOB INSERT Cursors
DECLARE cursor_name CURSOR FOR
 INSERT BLOB col
 INTO table
 [FILTER [FROM subtype] TO subtype]
 MAXIMUM_SEGMENT length;
cursor_name is the name of the cursor which will be used in subsequent OPEN, INSERT and CLOSE statements.

col is the name of the Blob column

table is the name of the table containing the Blob

FILTER ... specifies an optional Blob filter which is used to translate a Blob from one subtype to another. Blob filters
are outside the scope of this manual.

length specifies the size of the temporary buffer used to transfer the Blob data to and from the application. Do not try to
read or write more than length bytes in a single operation or unpredictable results will occur.

Example

The following declares a cursor that can be used to insert a new Blob into the OPERATIONS table.
EXEC SQL
 DECLARE C1 CURSOR FOR INSERT BLOB OP_LOADS
 INTO OPERATIONS;

5.2.1.2. Opening BLOB INSERT Cursors
OPEN cursor_name INTO :var;

42 Embedded SQL Guide for RM/Cobol

cursor_name is the name of a cursor declared in a previous DECLARE CURSOR statement.

var is the name of a host variable which will receive the new Blob ID.

Example

The following code snippet declares a BLOB INSERT cursor and opens it.
EXEC SQL
 DECLARE C1 CURSOR FOR INSERT BLOB OP_LOADS
 INTO OPERATIONS;
EXEC SQL
 OPEN C1 INTO :WS-BLOB-ID;

5.2.1.3. Inserting Blob Data
INSERT CURSOR cursor_name
VALUES (:buffer [INDICATOR] :segment_length);
cursor_name is the name of a cursor declared in a previous DECLARE CURSOR statement.

buffer is a host variable containing the data to be written to the Blob.

segment_length is a host variable holding the number of bytes of data in buffer.

Each execution of the INSERT statement adds the contents of buffer to the Blob. If you need to write more data to the
Blob than will fit into a single buffer, which is limited by the segment size of the Blob, you must execute the INSERT
statement repeatedly until you have written all of the data.

Example

The following code snippet declares a BLOB INSERT cursor, opens it and writes the data to the Blob. Updating the Blob
ID in the table is omitted in the interests of clarity.

01 WS-BUFFER PIC X(1000).
01 WS-LENGTH PIC 9(4).
01 WS-BLOB-ID PIC S9(19) BINARY(8).
...
EXEC SQL
 DECLARE C1 CURSOR FOR BLOB INSERT OP_LOADS
 INTO OPERATIONS
 MAXIMUM_SEGMENT 1000; .
EXEC SQL
 OPEN C1 INTO :WS-BLOB-ID; .
 PERFORM UNTIL DONE

 EXEC SQL
 INSERT C1 VALUES(:WS-BUFFER :WS-LENGTH);
 END-PERFORM.
EXEC SQL
 CLOSE C1; .
 ...
 Update Blob ID
 ...

5.2.1.4. Closing BLOB WRITE Cursors
Blob write cursors are closed in the same way as any other cursor, using the CLOSE statement.

5.2.2. Updating the Blob ID
After you have obtained a new Blob ID by inserting a Blob into the table you must update the Blob column in the table with
the new ID. This is done using a standard UPDATE statement.

Embedded SQL Guide for RM/Cobol 43

You could update the Blob ID using an UPDATE statement as follows:
EXEC SQL
 UPDATE OPERATIONS SET OP_LOADS = :WS-BLOB-ID
 WHERE OP_UNIT_ID = 'TLR1234';

5.3. Deleting Blob Data
To delete a Blob from a table you could use an UPDATE statement to set the Blob ID to NULL as follows:

EXEC SQL
 UPDATE OPERATIONS SET OP_LOADS = NULL
 WHERE OP_UNIT_ID = 'TLR1234';

44 Embedded SQL Guide for RM/Cobol

6. Using Stored Procedures
A stored procedure is a self contained set of SQL statements stored in a database as part of its metadata. Stored procedures
are created using Firebird's Data Definition Language (DDL) in much the same way that tables and views are created. A
discussion of stored procedure programming is outside the scope of this manual.

There are two types of procedures that can be called from an application:

Select procedures that an application can use in place of a table or view in a SELECT statement.

Executable procedures that an application can call directly, with the EXECUTE PROCEDURE statement. An
executable procedure may or may not return values to the calling program.

Procedures operate within the context of a transaction. If the transaction is rolled back then any actions performed by the
stored procedure are also rolled back. Similarly, a procedure's actions are not final until the transaction is committed.

6.1. Using Select Procedures
Select procedures can be using in singleton selects or cursors in the same way as any table or view. The syntax for calling a
select procedure is very similar to that for a table or view. The one difference is that a procedure may have input arguments.

SELECT col [, col ...]
[INTO :var, [:var ...]]
FROM procedure ([arg [, arg ...])
[WHERE ...]
[ORDER BY ...]
col is the name of one of the procedure's output parameters.

var is the name of a host variable which will receive the value of the output parameter.

procedure is the name of the stored procedure

arg is the value of one of the procedure's input parameters. The value can be given by either a host variable or a literal
that agrees in data type and size with the input parameter.

Example

The following SELECT statement returns the value returned by the OP_NEXT_ID procedure.
EXEC SQL
 SELECT OP_ID FROM OP_NEXT_ID()
 INTO :WS-NEXT-ID;

The following cursor retrieves values from the GET_OP_HISTORY select procedure.
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT OPH_ID, OPH_DATE, OPH_STATUS
 FROM GET_OP_HISTORY(:WS-ID, :WS-LOW-DATE, :WS-HIGH-DATE);

6.2. Using Executable Procedures
An executable procedure is called directly by the application. They can receive input parameters from the application and
return output parameters to the application. The syntax for calling an executable procedure is:

EXECUTE PROCEDURE procedure arg [[INDICATOR] :indicator1]
 [, arg [[INDICATOR] :indicator1] ...]
 RETURNING_VALUES :var [[INDICATOR] :indicator2]
 [, :var [[INDICATOR] :indicator2] ...];
procedure is the name of the stored procedure.

arg is one value of one of the procedure's input parameters. The value can be given by either a host variable or a literal
that agrees in data type and size with the input parameter.

indicator1 is the name of a host variable that holds the NULL status flag for the parameter. A value of -1 indicates that
the parameter is null. A value of zero indicates not NULL.

var is the name of a host variable which will receive the value of one of the procedure's output parameters.

Embedded SQL Guide for RM/Cobol 45

indicator2 is the name of a host variable which will receive the value of the parameter's NULL status flag. A value of -1
indicates that the parameter is null. A value of zero indicates not NULL.

Example

The following EXECUTE PROCEDURE statement retrieves the value returned by the OP_NEXT_ID procedure.
EXEC SQL
 EXECUTE PROCEDURE OP_NEXT_ID
 RETURNING_VALUES :WS-NEXT-ID;

46 Embedded SQL Guide for RM/Cobol

7. Using Events
This chapter introduces Firebird events, briefly describes how they work and how to make use of them in your program.
The event mechanism allows applications to respond to changes and other database activities that are caused by other,
concurrently executing applications without the need for the applications to communicate directly with each other.

A Firebird event is a message passed by a trigger or stored procedure to the Firebird event manager. The message
announces the occurrence of a particular condition such as an INSERT, UPDATE or DELETE although the condition is not
restricted to these and may, in fact, be anything at all. Event messages are forwarded to waiting applications only when the
controlling transaction is committed.

The Firebird event manager maintains a list of event messages submitted by triggers and stored procedures. It also
maintains a list of applications that have registered an interest in particular events. Each time the event manager receives a
new event message it notifies the interested applications that the event has occurred.

7.1. Signaling Event Occurrence
While a discussion of trigger and stored procedure programming is outside the scope of this document, it may be helpful to
provide a quick overview of the method used to signal an event here. An event can only be signaled by a trigger or stored
procedure. This is done by using the POST_EVENT statement. The POST_EVENT statement takes a single, string
parameter which is the event name, which are limited to 15 characters in length. This name is used in your applications to
register an interest in the event.

Example

To signal an event named “new_order” each time a new row is written to the ORDERS table you might write a trigger like
this:

CREATE TRIGGER ORDERS_AFTER_INSERT FOR ORDERS
 AFTER INSERT
AS
BEGIN
 POST_EVENT “new_order”;
END

7.2. Registering Interest in Events
Your application must register interest in a particular event with the Firebird event manager before waiting for that event to
occur. To register interest in an event use the EVENT INIT statement.

EXEC SQL
 EVENT INIT request_name (event_name [, event_name ...]);
request_name is the name that your application will use to refer to this event. You will use this name to refer to you
event in subsequent EVENT WAIT statements.

event_name is the name of an event in which you wish to register an interest. You may register an interest in multiple
events by specifying the event names here, separated by commas. The event names my be given as string literals or as
the content of an application variable.

Examples
EXEC SQL
 EVENT INIT MY_EVENT (“event1”, “event2”);
EXEC SQL
 EVENT INIT MY_EVENT (:WS-EVENT-NAME);

7.3. Waiting for an Event
Once you have registered interest in an event using the EVENT INIT statement you can wait for event an event to occur by
using the EVENT WAIT statement.

EXEC SQL
 EVENT WAIT request_name;

Embedded SQL Guide for RM/Cobol 47

request_name must match the request_name given in the corresponding EVENT INIT statement.

Upon executing the EVENT WAIT statement your application will be suspending until one of the events listed on the
EVENT INIT statement occurs. At that time your application will resume executing at the statement following the EVENT
WAIT statement.

If you registered an interest in more that one event then you must check the ISC-EVENTS array to see which event
occurred. There will be one entry in this array for each registered event. The order of events in this array correspond to the
order in which the event names were given on the EVENT INIT statement. Each event that has occurred while your
program was waiting will have a non zero value in this array.

 Example
EXEC SQL
 EVENT INIT MY-EVENT (“event1”, “event2”); .
EXEC SQL
 EVENT WAIT MY-EVENT; .
 IF ISC-EVENTS(1) NOT EQUAL 0 THEN
 DISPLAY “Event 1 occurred”.
 IF ISC-EVENTS(2) NOT EQUAL 0 THEN
 DISPLAY “Event 2 occurred”.

48 Embedded SQL Guide for RM/Cobol

8. Handling Errors
All embedded SQL application should include mechanisms for trapping and responding to run time errors. Every time an
SQL statement is executed, it returns a status indicator in the SQLCODE variable, which is declared automatically during
preprocessing with gpre. The following table summarized possible SQLCODE values and their meanings.

Value Meaning
0 Success

1-99 Warning or information message

100 End of file

< 0 Error. Statement failed to complete.

Table 5SQLCODE Values

To trap and respond to run time errors, SQLCODE should be checked after each SQL operations. There are three ways to
examine SQLCODE and respond to errors:

Use WHENEVER statements to automate checking SQLCODE and to handle errors when they occur.

Text SQLCODE directly after individual SQL statements.

Use a combination of WHENEVER and direct testing.

8.1. WHENEVER
WHENEVER {SQLERROR | SQLWARNING | NOT FOUND} {GOTO label | CONTINUE};
label is the name of a branch target (label) in your application.

The WHENEVER statement allows all SQL errors to be handled with a minimum of coding. WHENEVER statements
specify error handling code that a program should execute when SQLCODE indicates errors, warnings or end of file. After
WHENEVER appears in a program, all subsequent SQL statements automatically jump to the specified code location when
the appropriate error or warning occurs. NOTE: WHENEVER is a declarative, not executable statement. It applies to all
lines of code that occur after the location of WHENEVER in the source code.

Up to three WHENEVER statements can be active at any time:

WHENEVER SQLERROR is activated when SQLCODE is less than zero, indicating that a statement failed.

WHENEVER SQLWARNING is activated when SQLCODE has a value from 1 to 99, indicating that while a
statement succeeded there is some question about the way it succeeded.

WHENEVER NOT FOUND is activated when SQLCODE is 100, indicating that end of file was reached during
FETCH or SELECT.

Omitting a statement for a particular condition means it is not trapped. Error conditions can also be ignored by using the
CONTINUE clause inside a WHENEVER statement.

To switch to another error handling routine for a particular error condition, embed another WHENEVER statement in the
program at the point where error handling should be changed. The new setting overrides any previous setting and remains in
effect until overridden in turn.

Example

The following code snippet sets both the SQLERROR and SQLWARNING targets but leaves NOT FOUND detection to the
application.

EXEC SQL
 WHENEVER SQLERROR GOTO FATAL-ERROR;
EXEC SQL
 WHENEVER SQLWARNING GOTO WARNING-ERROR;

Embedded SQL Guide for RM/Cobol 49

The following code snippet sets the SQLERROR target and then resets it to another target.
EXEC SQL
 WHENEVER SQLERROR GOTO FATAL-ERROR1;
...
EXEC SQL
 WHENEVER SQLERROR GOTO FATAL-ERROR2;

8.2. Checking SQLCODE Directly
An application can test SQLCODE directly after each SQL statement instead of relying on WHENEVER to trap all errors.
The main advantage to testing SQLCODE directly is that custom error handling routines can be designed for particular
situations.

Example

The following code snippet uses WHENEVER to trap all fatal errors but testing SQLCODE directly to detect end of file.
EXEC SQL
 WHENEVER SQLERROR GOTO FATAL-ERROR;
...
EXEC SQL
 FETCH C1 INTO :WS-COLUMN-VALUE; .
 IF SQLCODE = 100 THEN
 GO TO END-EOF-FILE.

8.3. Displaying Error Messages
The same SQLCODE can be returned by many Firebird errors so simply displaying SQLCODE is not an adequate way to
report errors that occur in your application. By using the Firebird API it is possible to retrieve the human readable text of
the error message which you can then display or log as appropriate.

The text of Firebird error messages is captured using the isc_interprete function. This function takes a pointer to the ISC-
STATUS-VECTOR host variable and returns the error text associated with the error codes contained therein. To obtain a
pointer to the ISC-STATUS-VECTOR host variable, use the rmc_status_address function.

8.3.1. rmc_status_address
CALL “rmc_status_address” USING ISC-STATUS-VECTOR GIVING ptr
ptr is a PIC S9(10) USAGE BINARY(4) host variable which will receive the pointer to ISC-STATUS-VECTOR.

This function creates a temporary copy of ISC-STATUS-VECTOR, converts the error codes from Cobol to native format
and returns a pointer to the temporary copy. This means that you must call this function prior to every call to isc_interprete
in order to have the latest error codes.

NOTE: This function is specific to RM/Cobol and is not a part of the standard Firebird API.

8.3.2. isc_interprete
CALL “isc_interprete” USING buffer, ptr GIVING length
buffer is a PIC X(512) host variable that will receive the text of the error message. This variable must be large enough
to hold the largest expected error message or buffer overflow will occur.

ptr is the host variable containing the status vector pointer returned by rmc_status_address.

length is the host variable which will receive the length of the error message that was returned in buffer.

It is possible, likely in fact, that multiple error message will be returned for any given status vector. Each time
isc_interprete is called it returns the text of a single error message and updates ptr to point to the next error code. In order
to retrieve all error messages it is necessary to call isc_interprete repeatedly. isc_interprete will return a value of zero in
ptr when the last error message has been retrieved.

Example

The following is what a typical text mode error paragraph might look like.
ISC-ERROR.

50 Embedded SQL Guide for RM/Cobol

 MOVE SQLCODE TO WS-DISP-NUM.
 DISPLAY "SQL error = ", WS-DISP-NUM.
 CALL "rmc_status_address" USING ISC-STATUS-VECTOR
 GIVING WS-STATUS-PTR.
 CALL "isc_interprete" USING WS-TEXT, WS-STATUS-PTR
 GIVING WS-LENGTH.
 PERFORM UNTIL WS-LENGTH = 0
 DISPLAY WS-TEXT (1:WS-LENGTH)
 CALL "isc_interprete" USING WS-TEXT, WS-STATUS-PTR
 GIVING WS-LENGTH
 END-PERFORM.
EXEC SQL
 WHENEVER SQLERROR CONTINUE; .
EXEC SQL
 ROLLBACK; .
EXEC SQL
 DISCONNECT ALL; .
 STOP RUN.

Embedded SQL Guide for RM/Cobol 51

9. Compiling and Running Your Program
Before an embedded SQL program can be compiled, it must be preprocessed with gpre. gpre translates SQL commands
into statements the host language compiler can understand by generating Firebird library function calls. gpre translates SQL
database variables into oneS the host language compiler accepts and declares these variables in host language format. gpre
also declares certain variables and data structures required by SQL, such as the SQLCODE variable.

9.1. Compiling Your Program
The syntax for the gpre command line is:

gpre [language] [options] infile [outfile]
Language Switches

The language switch specifies the language of the source program. gpre will preprocess programs written in the following
languages:

Switch Language
-c C

-cxx C++

-al[sys] Ada (Alsys)

-a[da] Ada (VERDIX, VMS, Telesoft)

-co[bol] Cobol. In the absence of the -ansi and -rmc
switch this switch indicates VMS Cobol.

-ansi In conjunction with the -cobol switch this
switch indicates ANSI-85 Cobol

-rmc In conjunction with the -cobol switch this
switch indicates RM/Cobol

-noqli Suppresses the recognition and parsing of
QLI commands in the source file. QLI can
cause problems with some languages, like
Cobol, whose reserved word list intersects
the QLI reserved word list.

-f[ortran] Fortran

-pa[scal] Pascal

Table 6Language Switches

It is possible to avoid the need to specify a language switch when preprocessing your programs by choosing the appropriate
extension for the source code file name. The following table lists the file name extension that Firebird recognizes for each
language.

Language Input File
Extension

Default Output
File Extension

Ada (VERDIX) ea a

Ada (Alsys, Telesoft) eada ada

C e c

C++ exx cxx

Cobol ecbl cbl

Fortran ef f

Pascal epas pas

Table 7File Name Extensions

52 Embedded SQL Guide for RM/Cobol

Option Switches

The option switches specify additional, language independent options.

Switch Description
-charset name Determines the active character set at compile

time, where name is the character set name.

-d[atabase] path Declares the database to be used by the current
program. Use this option if the program does
not contain a DECLARE DATABASE
statement.

-d_float VMS only. Specifies that double precision data
will be passed from the application id
D_FLOAT format and stored in the database in
G_FLOAT format.

-dfm format Specifies the format to be used to transfer dates
and timestamps between the program and
Firebird. format is a string describing the
format. If the switch is omitted, all date and
time columns are given as a 64 bit value that
must be interpreted using the isc_encode_date
and isc_decode_date functions. See the
discussion of timestamp formats below.

-e[ither_case] Enables gpre to recognize SQL commands in
either upper case or lower case. If this switch is
omitted SQL commands must be upper case.

-m[anual] Suppresses automatic generation of transactions.
Use this switch for programs that perform their
own transaction handling.

-n[o_lines] Suppresses line number for C programs.

-o[utput] Directs gpre output to standard out rather than a
file.

-password password Specifies the database password.

-r[aw] Prints BLR as raw numbers rather than as their
mnemonic equivalents. This makes gpre output
smaller but less readable.

-sql_dialect n Sets the SQL dialect. Valid values are 1, 2 and
3.

-user username Specifies the database user ID.

-x handle Specifies the database handle given with the
-database option an external declaration. This
option directs the program to pick up a global
declaration from another program.

-z Prints gpre's version number and the version
number of all declared databases.

Table 8Option Switches

Timestamp Format Strings

It is possible to specify the format that is used to transfer DATE, TIME and TIMESTAMP columns between your
application and the database manager. This is done using the -dfm option switch. The -dfm switch takes a string as its
argument. This string contains the format string. The date format is represented in this string using a number of character
codes to represent the various parts of a timestamp field. To build a format string just concatenate the appropriate selections
from the following table:

Embedded SQL Guide for RM/Cobol 53

Forma
t Code

Description

yy The last two digits of the year.

yyyy The full four digit year including the century.

mm The two digit month of the year.

dd The two digit day of the month.

hh The two digit hour. This is given in military (24 hour)
format.

nn The two digit minutes.

ss The two digit seconds.

Table 9Timestamp Format Strings

When using the -dfm switch, host variables which are to receive a DATE, TIME or TIMESTAMP field must be large
enough to hold the date and time format specified by the format string.

9.2. Running Your Program
In order to execute your RM/Cobol application you must provide the name of Firebird's RM/Cobol interface shared library
on the command line. This is done using the L= command line switch.

For Windows applications your command would look like this:
runcobol myapp.cob L=fbrmclib.dll

For Unix applications your command line would look like this:
runcobol myapp.cob L=fbrmclib.so

	1. Program Structure
	1.1. General
	1.2. Reading this Guide
	1.3. Definition of Terms
	1.4. Declaring Host Variables
	1.5. Declaring and Accessing Databases
	1.6. Transactions
	1.7. SQL Statements
	1.8. Dynamic SQL (DSQL)
	1.9. Error Handling

	2. Using Databases
	2.1. Declaring a Database
	2.1.1. Connection Strings
	2.1.2. SET DATABASE
	2.1.3. SET NAMES

	2.2. Opening a Database
	2.2.1. CONNECT

	2.3. Closing a Database
	2.3.1. DISCONNECT

	3. Using Transactions
	3.1. Transaction Behaviour
	3.1.1. Access Mode
	3.1.2. Lock Resolution
	3.1.3. Isolation Level

	3.2. Starting a Transaction
	3.2.1. SET TRANSACTION

	3.3. Saving Your Changes
	3.3.1. COMMIT

	3.4. Discarding Your Changes
	3.4.1. ROLLBACK

	4. Accessing the Data
	4.1. Supported Data Types
	4.2. SQL Expressions
	4.2.1. Precedence of Operators
	4.2.2. String Concatenation
	4.2.3. Arithmetic Operators
	4.2.4. Comparison Operators
	4.2.4.1. BETWEEN
	4.2.4.2. CONTAINING
	4.2.4.3. IN
	4.2.4.4. LIKE
	4.2.4.5. IS NULL
	4.2.4.6. STARTING WITH
	4.2.4.7. ALL
	4.2.4.8. ANY or SOME
	4.2.4.9. EXISTS
	4.2.4.10. SINGULAR

	4.2.5. Logical Operators
	4.2.6. NULLs in Expressions
	4.2.7. Computed Columns
	4.2.8. Built in Functions
	4.2.8.1. CAST
	4.2.8.2. EXTRACT
	4.2.8.3. SUBSTRING
	4.2.8.4. UPPER
	4.2.8.5. GEN_ID
	4.2.8.6. AVG
	4.2.8.7. COUNT
	4.2.8.8. MAX
	4.2.8.9. MIN
	4.2.8.10. SUM
	4.2.8.11. CASE
	4.2.8.12. COALESCE
	4.2.8.13. NULLIF

	4.3. Retrieving Data
	4.3.1. The SELECT statement
	4.3.2. Named Transactions
	4.3.3. Set Qualifiers
	4.3.4. List of Columns
	4.3.5. Specifying Host Variables for Returned Columns
	4.3.6. Data Source
	4.3.7. Search Conditions
	4.3.8. Grouping Output
	4.3.9. Limiting Groups Returned
	4.3.10. Combining Queries
	4.3.11. Ordering Output
	4.3.12. Controlling Row Locking
	4.3.13. Selecting a Single Row
	4.3.14. Selecting Multiple Rows
	4.3.14.1. Declaring a Cursor
	4.3.14.2. Opening a Cursor
	4.3.14.3. Fetching Rows from a Cursor
	4.3.14.4. Closing a Cursor

	4.4. Inserting Data
	4.4.1. The INSERT Statement

	4.5. Updating Data
	4.5.1. The UPDATE statement

	4.6. Deleting Data
	4.6.1. The DELETE Statement

	5. Accessing Blob Data
	5.1. Retrieving Blob Data
	5.1.1. Retrieving the Blob ID
	5.1.2. Retrieving the Blob Data
	5.1.2.1. Declaring BLOB READ Cursors
	5.1.2.2. Opening BLOB READ Cursors
	5.1.2.3. Fetching Blob Data
	5.1.2.4. Closing BLOB READ Cursors

	5.2. Updating Blob Data
	5.2.1. Inserting Blob Data
	5.2.1.1. Declaring BLOB INSERT Cursors
	5.2.1.2. Opening BLOB INSERT Cursors
	5.2.1.3. Inserting Blob Data
	5.2.1.4. Closing BLOB WRITE Cursors

	5.2.2. Updating the Blob ID

	5.3. Deleting Blob Data

	6. Using Stored Procedures
	6.1. Using Select Procedures
	6.2. Using Executable Procedures

	7. Using Events
	7.1. Signaling Event Occurrence
	7.2. Registering Interest in Events
	7.3. Waiting for an Event

	8. Handling Errors
	8.1. WHENEVER
	8.2. Checking SQLCODE Directly
	8.3. Displaying Error Messages
	8.3.1. rmc_status_address
	8.3.2. isc_interprete

	9. Compiling and Running Your Program
	9.1. Compiling Your Program
	9.2. Running Your Program

